Suppr超能文献

用于脑干的自动白质纤维束分割

Automated White Matter Fiber Tract Segmentation for the Brainstem.

作者信息

Li Mingchu, Zeng Qingrun, Zhang Jiawei, Huang Ying, Wang Xu, Ribas Eduardo Carvalhal, Wu Xiaolong, Liu Xiaohai, Liang Jiantao, Chen Ge, Feng Yuanjing, Li Mengjun

机构信息

Department of Neurosurgery, Capital Medical University Xuanwu Hospital, Beijing, China.

Academy for Advanced Interdisciplinary Science and Technology, Zhejiang University of Technology, Hangzhou, China.

出版信息

NMR Biomed. 2025 Feb;38(2):e5312. doi: 10.1002/nbm.5312.

Abstract

This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas. A total of 100 fiber clusters were identified and annotated. Cortical parcellation-based fiber selection was then performed to extract fibers within the annotated clusters that projected to their corresponding cortical regions. This atlas was applied for automatic brainstem fiber bundle segmentation in 10 HCP subjects and 8 patients with brainstem cavernous malformations. The spatial overlap between automatic and manual reconstruction was assessed. Ultimately, eight fiber bundles were identified in the brainstem atlas on the basis of their trajectories: the corticospinal tract (CST), corticobulbar tract, frontopontine tract, parieto-occipital-pontine tract, medial lemniscus, and superior, middle, and inferior cerebellar peduncles. The mean and standard deviation of the weighted dice (wDice) scores between the automatic and manual reconstructions were 0.9076 ± 0.0950 for the affected CST, 0.9388 ± 0.0439 for the contralateral CST, 0.9130 ± 0.0588 for the affected medial lemniscus, and 0.9600 ± 0.0243 for the contralateral medial lemniscus. This proposed method effectively distinguishes major brainstem fiber bundles across subjects while reducing labor costs and interoperator variability inherent to manual reconstruction. Additionally, this method is robust in that it allows for the visualization and identification of fiber tracts surrounding brainstem cavernous malformations.

摘要

本研究旨在开发一种用于脑干纤维束的自动分割方法。我们将脑干作为种子区域,基于多壳、多组织约束球面反卷积,对来自人类连接体项目(HCP)的40名受试者进行概率性纤维束成像。所有纤维束成像数据都被配准到一个公共空间,以构建脑干纤维簇图谱。共识别并标注了100个纤维簇。然后进行基于皮质分区的纤维选择,以提取标注簇内投射到其相应皮质区域的纤维。该图谱应用于10名HCP受试者和8名脑干海绵状畸形患者的脑干纤维束自动分割。评估了自动重建与手动重建之间的空间重叠情况。最终,根据其走行在脑干图谱中识别出八条纤维束:皮质脊髓束(CST)、皮质延髓束、额桥束、顶枕桥束、内侧丘系以及上、中、下小脑脚。自动重建与手动重建之间加权骰子(wDice)分数的均值和标准差,患侧CST为0.9076±0.0950,对侧CST为0.9388±0.0439,患侧内侧丘系为0.9130±0.0588,对侧内侧丘系为0.9600±0.0243。所提出的方法有效地区分了不同受试者的主要脑干纤维束,同时降低了人工重建固有的劳动力成本和操作者间的变异性。此外,该方法具有鲁棒性,能够可视化并识别脑干海绵状畸形周围的纤维束。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验