Suppr超能文献

将抗血管内皮生长因子纳米抗体包裹于非离子表面活性剂囊泡纳米粒中:一种延长循环半衰期及提高疗效的新方法。

Encapsulation of anti-VEGF nanobody into niosome nanoparticles: a novel approach to enhance circulation half life and efficacy.

作者信息

Chiani Mohsen, Abedini Raha, Ahangari-Cohan Reza, Behdani Mahdi, Barzi Seyed Mahmoud, Mohseni Nastaran, Kazemi-Lomedasht Fatemeh

机构信息

Department of NanoBiotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran.

Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

出版信息

J Microencapsul. 2025 Mar;42(2):132-141. doi: 10.1080/02652048.2024.2443435. Epub 2024 Dec 23.

Abstract

This study aimed to encapsulate an anti-VEGF nanobody (Nb) within niosome nanoparticles (NNPs) to enhance its circulation half life. Key parameters such as encapsulation efficiency, stability, Nb release, cytotoxicity, and cell migration inhibition in HUVEC cells were evaluated, along with pharmacokinetic studies in mice. Nb-loaded NNPs (Nb-NNPs) were successfully prepared with an encapsulation efficiency of 78.3 ± 3.2% and demonstrated stability over one month. assays revealed that Nb-NNPs enhanced cytotoxicity and significantly reduced cell migration in HUVEC cells compared to free Nb ( < 0.05). Pharmacokinetic studies in mice demonstrated a dramatically reduced elimination rate constant (0.025 h vs. 0.843 h) and an extended terminal half life (27.721 h vs. 0.822 h), indicating slower clearance and prolonged systemic presence. In conclusion, these findings underscore the potential of Nb-NNPs to provide sustained and potent therapeutic effects, contributing valuable insights for advancing targeted therapeutic strategies.

摘要

本研究旨在将抗血管内皮生长因子纳米抗体(Nb)包裹于非离子表面活性剂囊泡纳米颗粒(NNPs)中,以延长其循环半衰期。评估了诸如包封率、稳定性、Nb释放、细胞毒性以及对人脐静脉内皮细胞(HUVEC)迁移的抑制等关键参数,同时还在小鼠中进行了药代动力学研究。成功制备了负载Nb的NNPs(Nb-NNPs),其包封率为78.3±3.2%,并在一个多月内表现出稳定性。检测显示,与游离Nb相比,Nb-NNPs增强了细胞毒性,并显著降低了HUVEC细胞的迁移(P<0.05)。小鼠药代动力学研究表明,消除速率常数显著降低(0.025小时对0.843小时),终末半衰期延长(27.721小时对0.822小时),表明清除减慢且全身存在时间延长。总之,这些发现强调了Nb-NNPs提供持续有效治疗效果的潜力,为推进靶向治疗策略提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验