Suppr超能文献

甲酰甲硫氨酸介导的真核生物核糖体冷适应质量控制途径。

Formyl-methionine-mediated eukaryotic ribosome quality control pathway for cold adaptation.

作者信息

Lee Chang-Seok, Sim Jaehwan, Kim Sang-Yoon, Lee Hyeonji, Roh Tae-Young, Hwang Cheol-Sang

机构信息

Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea.

Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.

出版信息

Mol Cell. 2025 Feb 6;85(3):602-619.e16. doi: 10.1016/j.molcel.2024.11.035. Epub 2024 Dec 24.

Abstract

Protein synthesis in the eukaryotic cytosol can start using both conventional methionine and formyl-methionine (fMet). However, a mechanism, if such exists, for detecting and regulating the incorporation of fMet (instead of Met) during translation, thereby preventing cellular toxicity of nascent fMet-bearing (fMet-) polypeptides, remains unknown. Here, we describe the fMet-mediated ribosome quality control (fMet-RQC) pathway in Saccharomyces cerevisiae. A eukaryotic translation initiation factor 3 subunit c, Nip1, specifically recognizes N-terminal fMet in nascent polypeptides, recruiting a small GTPase, Arf1, to induce ribosome stalling, largely with 41-residue fMet-peptidyl tRNAs. This leads to ribosome dissociation and subsequent stress granule formation. Loss of the fMet-RQC pathway causes the continued synthesis of fMet polypeptides, which inhibits essential N-terminal Met modifications and promotes their coaggregation with ribosomes. This fMet-RQC pathway is important for the adaptation of yeast cells to cold stress by promoting stress granule formation and preventing a buildup of toxic fMet polypeptides.

摘要

真核细胞质中的蛋白质合成可以使用常规甲硫氨酸和甲酰甲硫氨酸(fMet)起始。然而,一种在翻译过程中检测和调节fMet(而非Met)掺入,从而防止新生的携带fMet(fMet-)多肽产生细胞毒性的机制(如果存在的话)仍然未知。在这里,我们描述了酿酒酵母中的fMet介导的核糖体质量控制(fMet-RQC)途径。真核翻译起始因子3亚基c,即Nip1,特异性识别新生多肽中的N端fMet,招募小GTP酶Arf1以诱导核糖体停滞,主要是与41个残基的fMet-肽基tRNA结合。这导致核糖体解离并随后形成应激颗粒。fMet-RQC途径的缺失会导致fMet多肽的持续合成,这会抑制必需的N端Met修饰,并促进它们与核糖体的共聚集。这种fMet-RQC途径通过促进应激颗粒形成和防止有毒fMet多肽的积累,对酵母细胞适应冷应激很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验