Farooq Aneeq, Martens Miklas, Kroemer Niklas, Pfaffendorf Christoph, Decousser Jean-Winoc, Nordmann Patrice, Wicha Sebastian G
Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.
Dynamic Team-EA 7380, Faculté De Santé, Université Paris-Est-Créteil Val-De-Marne, Créteil, France.
J Antimicrob Chemother. 2025 Mar 3;80(3):701-712. doi: 10.1093/jac/dkae459.
MDR Gram-negative bacteria, such as ESBL-producing and carbapenemase-producing Klebsiella pneumoniae, represent major global health threats. Treatment options are limited due to increasing resistance and slowed development of novel antimicrobials, making it necessary to apply effective combination therapies based on approved antibiotics.
To quantitatively evaluate the synergistic potential of meropenem and fosfomycin against carbapenem-resistant K. pneumoniae strains isolated from clinics.
We evaluated four MDR K. pneumoniae strains, each expressing KPC-2 or KPC-3, using static time-kill assays that accounted for measured meropenem degradation. This was followed by pharmacokinetic/pharmacodynamic (PK/PD) interaction modelling, which estimated meropenem degradation rate constants and identified perpetrator-victim relationships in PD interactions. Dynamic hollow-fibre infection model (HFIM) experiments were used to confirm synergy.
Static time-kill assays demonstrated high killing effects and suppressed regrowth for the combination of meropenem and fosfomycin, compared with the failure of monotherapy. Meropenem degradation was significantly higher in the presence of bacteria, attributable to carbapenemase activity. Pharmacometric models indicated a synergistic interaction primarily driven by meropenem as the perpetrator, enhancing the potency of fosfomycin. HFIM experiments confirmed in vitro synergy, demonstrating continuous bacterial suppression of the combination therapy.
Meropenem and fosfomycin exhibited additive or synergistic potential against carbapenemase-expressing single- or double-resistant K. pneumoniae at clinically achievable concentrations. This combination therapy may offer a strategy against MDR infections, possibly improving clinical treatment outcomes. Further in vivo research is needed to translate these findings into clinical practice, emphasizing the importance of PK/PD modelling in rationalizing antibiotic use.
产超广谱β-内酰胺酶(ESBL)和产碳青霉烯酶的肺炎克雷伯菌等多重耐药革兰氏阴性菌是全球主要的健康威胁。由于耐药性增加和新型抗菌药物研发缓慢,治疗选择有限,因此有必要应用基于已批准抗生素的有效联合疗法。
定量评估美罗培南和磷霉素对临床分离的耐碳青霉烯肺炎克雷伯菌菌株的协同潜力。
我们使用考虑了实测美罗培南降解情况的静态时间杀菌试验,评估了四株分别表达KPC-2或KPC-3的多重耐药肺炎克雷伯菌菌株。随后进行药代动力学/药效学(PK/PD)相互作用建模,估计美罗培南降解速率常数,并确定PD相互作用中的主导-从属关系。动态中空纤维感染模型(HFIM)实验用于确认协同作用。
与单药治疗失败相比,静态时间杀菌试验表明美罗培南和磷霉素联合使用具有高杀菌效果并抑制再生长。在有细菌存在的情况下,美罗培南降解显著更高,这归因于碳青霉烯酶活性。药动学模型表明,协同相互作用主要由作为主导药物的美罗培南驱动,增强了磷霉素的效力。HFIM实验证实了体外协同作用,表明联合治疗可持续抑制细菌。
在临床可达到的浓度下,美罗培南和磷霉素对表达碳青霉烯酶的单耐药或双耐药肺炎克雷伯菌具有相加或协同潜力。这种联合疗法可能提供一种对抗多重耐药感染的策略,可能改善临床治疗结果。需要进一步的体内研究将这些发现转化为临床实践,强调PK/PD建模在合理使用抗生素中的重要性。