Pu Ying-Chih, Yu Yi-Chen, Shih Jen-An, Chen Yi-Li, Chen I-Wen Peter
Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan.
Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
J Phys Chem Lett. 2025 Jan 9;16(1):333-338. doi: 10.1021/acs.jpclett.4c02684. Epub 2024 Dec 27.
Photocatalytic water splitting holds great potential for transforming solar energy into valuable chemical products. However, obstacles such as the rapid recombination of electron-hole pairs and insufficiently active surface areas of photocatalysts remain significant challenges. In this study, we present the first demonstration that lithium bis(trifluoromethanesulfonyl)imide vapor successfully etches aluminum from NbAlC MAX phase powders while concurrently forming NbOF anchors on NbCT nanosheet (NbCTNS) MXene, leading to the in situ formation of a NbCTNS/NbOF heterostructure composite. This novel material exhibits a remarkable photoelectrochemical performance, achieving a current density of 252 μA cm, which is 1000 and 10 times greater than those of NbAlC MAX and NbC nanosheet MXene, respectively. These findings shed light on innovative approaches for developing photocatalytic materials via vapor-assisted synthesis, offering a promising pathway for advancing material discovery in both photo- and energy-related fields.
光催化水分解在将太阳能转化为有价值的化学产品方面具有巨大潜力。然而,诸如电子 - 空穴对的快速复合以及光催化剂活性表面积不足等障碍仍然是重大挑战。在本研究中,我们首次证明双(三氟甲磺酰)亚胺锂蒸气成功地从NbAlC MAX相粉末中蚀刻出铝,同时在NbCT纳米片(NbCTNS)MXene上形成NbOF锚定物,从而原位形成NbCTNS / NbOF异质结构复合材料。这种新型材料表现出卓越的光电化学性能,实现了252 μA cm的电流密度,分别比NbAlC MAX和NbC纳米片MXene的电流密度大1000倍和10倍。这些发现为通过气相辅助合成开发光催化材料的创新方法提供了思路,为推进光和能源相关领域的材料发现提供了一条有前景的途径。