Suppr超能文献

基于技能学习的机器人椎体板切割轨迹规划:通过外科医生技术整合和神经网络预测实现个性化

Skill-Learning-Based Trajectory Planning for Robotic Vertebral Plate Cutting: Personalization Through Surgeon Technique Integration and Neural Network Prediction.

作者信息

Tian Heqiang, Zhang Xiang, Yin Yurui, Ma Hongqiang

机构信息

College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

出版信息

Biomimetics (Basel). 2024 Nov 21;9(12):719. doi: 10.3390/biomimetics9120719.

Abstract

In robotic-assisted laminectomy decompression, stable and precise vertebral plate cutting remains challenging due to manual dependency and the absence of adaptive skill-learning mechanisms. This paper presents an advanced robotic vertebral plate-cutting system that leverages patient-specific anatomical variations and replicates the surgeon's cutting technique through a trajectory parameter prediction model. A spatial mapping relationship between artificial and patient vertebrae is first established, enabling the robot to mimic surgeon-defined trajectories with high accuracy. The robotic system's trajectory planning begins with acquiring point cloud data of the vertebral plate, which undergoes preprocessing, Non-Uniform Rational B-Splines (NURBS) fitting, and parametric discretization. Using the processed data, a spatial mapping method translates the surgeon's cutting path to the robotic coordinate system, with simulation validating the trajectory's adherence to surgical requirements. To further enhance the accuracy and stability of trajectory planning, a Backpropagation(BP) neural network is implemented, providing predictive modeling for trajectory parameters. The analysis and training of the neural network confirm its effectiveness in capturing complex cutting trajectories. Finally, experimental validation, involving an artificial vertebral body model and cutting trials on patient vertebrae, demonstrates the proposed method's capability to deliver enhanced cutting precision and stability. This skill-learning-based, personalized trajectory planning approach offers significant potential for improving the safety and quality of orthopedic robotic surgeries.

摘要

在机器人辅助下的椎板切除减压术中,由于依赖人工操作且缺乏自适应技能学习机制,稳定而精确的椎板切割仍然具有挑战性。本文提出了一种先进的机器人椎板切割系统,该系统利用患者特定的解剖变异,并通过轨迹参数预测模型复制外科医生的切割技术。首先建立人工椎体与患者椎体之间的空间映射关系,使机器人能够高精度地模仿外科医生定义的轨迹。机器人系统的轨迹规划始于获取椎板的点云数据,该数据经过预处理、非均匀有理B样条(NURBS)拟合和参数离散化。利用处理后的数据,一种空间映射方法将外科医生的切割路径转换到机器人坐标系中,通过模拟验证轨迹是否符合手术要求。为了进一步提高轨迹规划的准确性和稳定性,实施了反向传播(BP)神经网络,为轨迹参数提供预测建模。神经网络的分析和训练证实了其在捕捉复杂切割轨迹方面的有效性。最后,通过人工椎体模型和患者椎体切割试验进行的实验验证,证明了所提出方法能够提供更高的切割精度和稳定性。这种基于技能学习的个性化轨迹规划方法在提高骨科机器人手术的安全性和质量方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ad7/11672918/1da5ae82c738/biomimetics-09-00719-g001.jpg

相似文献

2
Ultrasonic-driven adaptive control of robotic plasma arc cutting for bevel applications.
Int J Adv Manuf Technol. 2025;137(7-8):3783-3797. doi: 10.1007/s00170-025-15331-2. Epub 2025 Mar 18.
3
Robotic-Assisted Decompression, Decortication, and Instrumentation for Minimally Invasive Transforaminal Lumbar Interbody Fusion.
JBJS Essent Surg Tech. 2024 Dec 6;14(4). doi: 10.2106/JBJS.ST.23.00080. eCollection 2024 Oct-Dec.
5
Human-Robot Shared Control for Osteotomy Procedure.
IEEE Trans Biomed Eng. 2025 Sep;72(9):2698-2708. doi: 10.1109/TBME.2025.3549867.
6
Robotic-Assisted Pedicle Screw Placement During Spine Surgery.
JBJS Essent Surg Tech. 2020 May 21;10(2):e0020. doi: 10.2106/JBJS.ST.19.00020. eCollection 2020 Apr-Jun.
7
Accuracy Evaluation of a Novel Spinal Robotic System for Autonomous Laminectomy in Thoracic and Lumbar Vertebrae: A Cadaveric Study.
J Bone Joint Surg Am. 2023 Jun 21;105(12):943-950. doi: 10.2106/JBJS.22.01320. Epub 2023 Mar 21.
8
Improving pedicle screw path planning by vertebral posture estimation.
Phys Med Biol. 2023 Sep 8;68(18). doi: 10.1088/1361-6560/ace753.
9
Learning curve analysis of robotic-assisted total knee arthroplasty with a Chinese surgical system.
J Orthop Surg Res. 2023 Nov 27;18(1):900. doi: 10.1186/s13018-023-04382-4.

本文引用的文献

3
Grinding trajectory generator in robot-assisted laminectomy surgery.
Int J Comput Assist Radiol Surg. 2021 Mar;16(3):485-494. doi: 10.1007/s11548-021-02316-1. Epub 2021 Jan 28.
5
Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends.
Robot Surg. 2019 Nov 7;6:9-23. doi: 10.2147/RSRR.S190720. eCollection 2019.
6
An enhanced teaching interface for a robot using DMP and GMR.
Int J Intell Robot Appl. 2018;2(1):110-121. doi: 10.1007/s41315-018-0046-x. Epub 2018 Mar 8.
7
Autonomous bone reposition around anatomical landmark for robot-assisted orthognathic surgery.
J Craniomaxillofac Surg. 2017 Dec;45(12):1980-1988. doi: 10.1016/j.jcms.2017.09.001. Epub 2017 Sep 19.
8
A potential function approach to surface coverage for a surgical robot.
Comput Aided Surg. 2006 Jan;11(1):1-9. doi: 10.3109/10929080500432173.
9
Development of the first force-controlled robot for otoneurosurgery.
Laryngoscope. 2003 Mar;113(3):465-71. doi: 10.1097/00005537-200303000-00014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验