Suppr超能文献

基于BBC micro:bit的可穿戴活动追踪器的开发及其对检测巴恰塔舞步的性能分析。

Development of a wearable activity tracker based on BBC micro:bit and its performance analysis for detecting bachata dance steps.

作者信息

Avci Kemal

机构信息

Department of Electrical and Electronics Engineering, Izmir Democracy University, 35140, Izmir, Turkey.

出版信息

Sci Rep. 2024 Dec 28;14(1):30700. doi: 10.1038/s41598-024-78064-4.

Abstract

The rising popularity of wearable activity tracking devices can be attributed to their capacity for gathering and analysing ambient data, which finds utility across numerous applications. In this study, a wearable activity tracking device is developed using the BBC micro:bit development board to identify basic bachata dance steps. Initially, a pair of smart ankle bracelets is crafted, employing the BBC micro:bit board equipped with a built-in accelerometer sensor and a Bluetooth module for transmitting accelerometer data to smartphones. Subsequently, a dataset encompassing six core bachata dance steps synchronized to four beats is created from ten participants to examine the performance of the system. A metric using squared Euclidean distance is applied for the accelerometer raw data to facilitate and standardize the automatic detection of the steps by the system. A user interface, built with Python and Tkinter library, is developed to enable automatic step detection using the accelerometer dataset. The results demonstrated a system accuracy rate of 79.2%.

摘要

可穿戴活动追踪设备越来越受欢迎,这归功于它们收集和分析环境数据的能力,这些数据在众多应用中都有用处。在本研究中,利用BBC micro:bit开发板开发了一种可穿戴活动追踪设备,以识别基本的巴恰塔舞步。首先,制作了一对智能脚踝手环,使用配备了内置加速度计传感器和蓝牙模块的BBC micro:bit板,将加速度计数据传输到智能手机。随后,从十名参与者那里创建了一个包含与四拍同步的六个核心巴恰塔舞步的数据集,以检验该系统的性能。对加速度计原始数据应用一种使用平方欧几里得距离的度量标准,以便于并标准化系统对舞步的自动检测。开发了一个用Python和Tkinter库构建的用户界面,以使用加速度计数据集实现自动舞步检测。结果表明系统准确率为79.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a83/11680584/a674f0a153b1/41598_2024_78064_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验