Chen Hsiu-Cheng, Lin Ting-Yu, Peng Hsin-Cheng, Lee Yu-Hsuan, Wang Ruey-Chi
Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
Chemosphere. 2025 Feb;371:144033. doi: 10.1016/j.chemosphere.2024.144033. Epub 2025 Jan 2.
Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 h. This study marked the first demonstration of using a low-power LED (0.6W) for photocatalytic algae inactivation in an aquarium ecosystem. Fluorescence spectroscopy showed a 98.9% removal efficiency of chlorophyll a after 12 h of photocatalyzing by g-CN/AlOOH, doubling that of g-CN alone. Algae inactivation was attributed to rupture, dehydration, and changes in dissolved organic matter. Hole (h) trapping experiments identified them as the primary active species for degrading methyl orange and algae. Materials analyses confirmed the formation of g-CN-AlOOH heterostructures, high surface potential, and Type II heterojunctions, which reduce electron-hole pair recombination. Furthermore, g-CN/AlOOH demonstrated selective non-enzymatic fluorescence detection of glucose, showing a linear relationship in 0∼4 mM, suitable for tears glucose detection. This study offers crucial insights and strategies for designing novel, non-toxic, high-performance visible light photocatalytic materials, efficient dye degradation, algae inactivation, and selective glucose detection.
可见光光催化剂在水净化方面具有巨大潜力,但关于高效、无毒光催化剂的研究却很有限。本研究通过热缩合合成了新型g-CN/AlOOH光催化纳米复合材料,与单独的g-CN相比,其吸附和可见光降解能力分别提高了36倍和11倍。在氙灯照射(>400nm)1小时的条件下,该纳米复合材料对甲基橙的去除率达到了98%。本研究首次证明了使用低功率LED(0.6W)对水族箱生态系统中的藻类进行光催化灭活。荧光光谱显示,g-CN/AlOOH光催化12小时后,叶绿素a的去除效率达到98.9%,是单独g-CN的两倍。藻类灭活归因于破裂、脱水和溶解有机物的变化。空穴(h)捕获实验确定它们是降解甲基橙和藻类的主要活性物种。材料分析证实了g-CN-AlOOH异质结构、高表面电位和II型异质结的形成,这些结构减少了电子-空穴对的复合。此外,g-CN/AlOOH对葡萄糖具有选择性非酶荧光检测能力,在0∼4mM范围内呈线性关系,适用于泪液葡萄糖检测。本研究为设计新型、无毒、高性能可见光光催化材料、高效染料降解、藻类灭活和选择性葡萄糖检测提供了关键见解和策略。