Arman Hassan, Olyaee Saeed, Seifouri Mahmood
Nano-Photonics and Optoelectronics Research Laboratory (NORLab), Shahid Rajaee Teacher Training University, Tehran, 16788-15811, Iran.
Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
Sci Rep. 2024 Dec 28;14(1):31534. doi: 10.1038/s41598-024-83051-w.
This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications. The proposed design features a 65[Formula: see text] diameter hollow core surrounded by seven silica rings. We achieved significant improvements in confinement loss and optical power distribution through progressive structural modifications. The optimized structure demonstrated a confinement loss of [Formula: see text] and over 95% optical power confinement in the hollow core. Our model predicts a relative sensitivity of [Formula: see text], a response time of 5.4 s, and a theoretical detection threshold of 2.24 ppm. The limit of detection (LoD) was estimated to be 3.8 ppbv, and the normalized noise equivalent absorption (NNEA) coefficient was [Formula: see text]. The sensor response exhibited excellent linearity over its operating range, with an R value of 0.9917 in the critical concentration range. These findings highlight the potential of our AR-HCF-based methane sensor design for real-time gas monitoring applications.
本研究提出了一种基于反谐振空芯光纤(AR-HCF)技术的创新型甲烷气体传感器设计,该设计针对3.3[公式:见原文]处的高精度检测进行了优化。我们的数值分析探讨了AR-HCF结构参数的几何优化,并纳入了实际组件规格。所提出的设计具有一个直径为65[公式:见原文]的空芯,周围环绕着七个二氧化硅环。通过逐步的结构修改,我们在限制损耗和光功率分布方面取得了显著改善。优化后的结构显示出[公式:见原文]的限制损耗以及在空芯中超过95%的光功率限制。我们的模型预测相对灵敏度为[公式:见原文],响应时间为5.4秒,理论检测阈值为2.24 ppm。检测限(LoD)估计为3.8 ppbv,归一化噪声等效吸收(NNEA)系数为[公式:见原文]。传感器响应在其工作范围内表现出出色的线性,在临界浓度范围内R值为0.9917。这些发现突出了我们基于AR-HCF的甲烷传感器设计在实时气体监测应用中的潜力。