Suppr超能文献

基于血小板指标的结直肠癌分期机器学习模型的开发与验证

Development and Validation of Machine Learning Model Platelet Index-based Predictor for Colorectal Cancer Stage.

作者信息

Aryanti Citra, Lusikooy Ronald Erasio, Sampetoding Samuel, Laidding Sachraswaty R, Warsinggih Warsinggih, Syarifuddin Erwin, Uwuratuw Julianus Aboyaman, Kusuma Muhammad Ihwan, Labeda Ibrahim, Rauf Murny Abdul

机构信息

Departement of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia.

Division of Digestive Surgery, Department of Surgery, Hasanuddin University, Indonesia.

出版信息

Asian Pac J Cancer Prev. 2024 Dec 1;25(12):4425-4433. doi: 10.31557/APJCP.2024.25.12.4425.

Abstract

INTRODUCTION

Colorectal cancer (CRC) staging is essential for effective treatment planning and prognosis. While platelet indices have shown promise in indicating CRC aggressiveness, a platelet index-based predictor for CRC staging has not been established in Indonesia. This study aimed to explore the relationship between platelet indices and CRC stage and to develop a predictive model and application.

METHODS

This cross-sectional study analyzed 369 CRC patients from Dr. Wahidin Sudirohusodo Hospital. Key parameters included age, gender, tumor location, and platelet indices: platelet count (PC), mean platelet volume (MPV), platelet distribution width (PDW), plateletcrit, and the MPV/PC ratio. Data were processed using SPSS 25, MATLAB, and Streamlit.

RESULTS AND DISCUSSION

The analysis revealed significant correlations between elevated platelet indices and advanced CRC stages. Various machine learning models were developed, with Support Vector Machine (SVM) achieving the highest accuracy at 82.9%, followed closely by K-Nearest Neighbors (82.7%), Neural Network (81.5%), Naive Bayes (80.5%), and logistic regression (51.5%). The most effective model was implemented as a portable application through Streamlit, yielding 79.2% internal validation and 89.2% external validation.

CONCLUSION

This study highlights a significant association between increased platelet indices and advanced CRC stages. The innovative platelet index-based predictor for CRC staging offers promising potential for enhancing individualized clinical decision-making. By providing a non-invasive method that complements existing staging techniques, this approach could significantly improve patient outcomes through earlier and more accurate CRC staging. The findings underscore the importance of integrating simple, accessible biomarkers into clinical practice to enhance diagnostic precision.

摘要

引言

结直肠癌(CRC)分期对于有效的治疗规划和预后至关重要。虽然血小板指标在表明CRC侵袭性方面已显示出前景,但在印度尼西亚尚未建立基于血小板指标的CRC分期预测模型。本研究旨在探讨血小板指标与CRC分期之间的关系,并开发一种预测模型及应用。

方法

这项横断面研究分析了来自瓦希丁·苏迪罗胡索多博士医院的369例CRC患者。关键参数包括年龄、性别、肿瘤位置和血小板指标:血小板计数(PC)、平均血小板体积(MPV)、血小板分布宽度(PDW)、血小板压积以及MPV/PC比值。数据使用SPSS 25、MATLAB和Streamlit进行处理。

结果与讨论

分析显示血小板指标升高与晚期CRC分期之间存在显著相关性。开发了各种机器学习模型,支持向量机(SVM)的准确率最高,为82.9%,紧随其后的是K近邻算法(82.7%)、神经网络(81.5%)、朴素贝叶斯算法(80.5%)和逻辑回归(51.5%)。最有效的模型通过Streamlit实现为一个便携式应用程序,内部验证率为79.2%,外部验证率为89.2%。

结论

本研究突出了血小板指标升高与晚期CRC分期之间的显著关联。基于血小板指标的创新性CRC分期预测模型在增强个体化临床决策方面具有广阔的潜力。通过提供一种补充现有分期技术的非侵入性方法,这种方法可以通过更早、更准确的CRC分期显著改善患者预后。研究结果强调了将简单、可及的生物标志物纳入临床实践以提高诊断准确性的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6741/12008319/790feffbf6b9/APJCP-25-4425-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验