Suppr超能文献

用于通过近红外光谱实时检测小麦粉质量的轻量级深度学习算法。

Lightweight deep learning algorithm for real-time wheat flour quality detection via NIR spectroscopy.

作者信息

Yang Yu, Sun Rumeng, Li Hongyan, Qin Yao, Zhang Qinghui, Lv Pengtao, Pan Quan

机构信息

Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China; Henan Key Laboratory of Grain Storage Information Intelligent Perception and Decision Making, Henan University of Technology, Zhengzhou 450001, China; Henan Grain Big Data Analysis and Application Engineering Research Center (Henan University of Technology), Zhengzhou 450001, China; College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.

College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2025 Apr 5;330:125653. doi: 10.1016/j.saa.2024.125653. Epub 2024 Dec 22.

Abstract

Wheat flour quality, determined by factors such as protein and moisture content, is crucial in food production. Traditional methods for analyzing these parameters, though precise, are time-consuming and impractical for large-scale operations. This study presents a lightweight convolutional neural network designed for real-time wheat flour quality monitoring using near-infrared spectroscopy. The model incorporates Ghost bottlenecks, external attention modules, and the Kolmogorov-Arnold network to enhance feature extraction and improve prediction accuracy. Testing results demonstrate high predictive performance with R values of 0.9653 (RMSE: 0.2886 g/100 g, RPD: 5.8981) for protein and 0.9683 (RMSE: 0.3061 g/100 g, RPD: 5.1046) for moisture content. The model's robustness across diverse samples and its suitability for online applications make it a promising tool for efficient and non-destructive quality control in the food industry.

摘要

由蛋白质和水分含量等因素决定的小麦粉质量在食品生产中至关重要。传统的分析这些参数的方法虽然精确,但耗时且不适用于大规模操作。本研究提出了一种轻量级卷积神经网络,用于使用近红外光谱实时监测小麦粉质量。该模型结合了Ghost瓶颈、外部注意力模块和柯尔莫哥洛夫-阿诺德网络,以增强特征提取并提高预测准确性。测试结果表明,该模型具有较高的预测性能,蛋白质的R值为0.9653(均方根误差:0.2886 g/100 g,相对分析误差:5.8981),水分含量的R值为0.9683(均方根误差:0.3061 g/100 g,相对分析误差:5.1046)。该模型在不同样本中的稳健性及其适用于在线应用的特性使其成为食品行业高效无损质量控制的有前途的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验