Gemechu Leta Daba, Efa Dame Alemayehu, Abebe Robsan
School of Mechanical Engineering, Institute of Technology, Wallaga University, P.O. Box 395, Nekemte, Ethiopia.
Heliyon. 2024 Dec 5;10(24):e40969. doi: 10.1016/j.heliyon.2024.e40969. eCollection 2024 Dec 30.
Turning AISI (American Iron and Steel Institute) D3 tool steel can be challenging due to a lack of optimal process parameters and proper coolant application to achieve high surface quality and temperature control. Machine learning helps in predicting the optimal parameters, whereas nanofluids enhance cooling efficiency while preserving both the tool and the workpiece. This work intends to utilize advanced machine learning approaches to optimize process parameters with the application of hybrid nanofluids (AlO/graphene) during the CNC turning of AISI D3. The Response Surface Methodology (RSM), Back Propagation (BP) neural networks, and Genetic Algorithms (GA) will be utilized to model and predict optimal turning parameters to enhance surface quality and manage tool tip temperature. The experiments ranged the cutting speed, nanofluid concentration, depth of cut, and feed rate from 150 to 180 m/min, 0.3 to 0.9 wt%, 0.5-0.9 mm, and 0.03-0.07 mm/rev. RSM and ANN analyses showed that cutting speed and feed rate had a significant effect on surface quality, contributing 11.5 % and 10.5 %, respectively, whereas the nanofluid affected tool tip temperature by 42.5 %. The GA determined that the optimal cutting speed became 150 m/min, the feed rate was 0.05 mm/rev, the cutting depth was 0.6 mm, and the nanofluid concentration was 0.8 %. At temperatures ranging from 23.01 °C to 28.41 °C, these conditions produced a desirable surface roughness of 0.16-0.45 μm. The findings emphasize the benefits of utilizing AlO/graphene nanofluid and machine learning algorithms in CNC turning to improve surface roughness and control temperature.
由于缺乏优化的工艺参数以及未能正确应用冷却液以实现高表面质量和温度控制,对美国钢铁协会(AISI)D3工具钢进行车削加工颇具挑战性。机器学习有助于预测最佳参数,而纳米流体在保护刀具和工件的同时可提高冷却效率。本研究旨在利用先进的机器学习方法,在AISI D3数控车削过程中应用混合纳米流体(AlO/石墨烯)来优化工艺参数。将采用响应面法(RSM)、反向传播(BP)神经网络和遗传算法(GA)对最佳车削参数进行建模和预测,以提高表面质量并控制刀尖温度。实验中,切削速度、纳米流体浓度、切削深度和进给速度的范围分别为150至180米/分钟、0.3至0.9重量%、0.5 - 0.9毫米以及0.03 - 0.07毫米/转。RSM和人工神经网络分析表明,切削速度和进给速度对表面质量有显著影响,分别贡献了11.5%和10.5%,而纳米流体对刀尖温度的影响为42.5%。遗传算法确定最佳切削速度为150米/分钟,进给速度为0.05毫米/转,切削深度为0.6毫米,纳米流体浓度为0.8%。在23.01°C至28.41°C的温度范围内,这些条件产生了0.16 - 0.45μm的理想表面粗糙度。研究结果强调了在数控车削中利用AlO/石墨烯纳米流体和机器学习算法来改善表面粗糙度和控制温度的益处。