Curtis Kevin, Odoh Samuel O
Department of Chemistry, University of Nevada Reno, Reno, Nevada, USA.
J Comput Chem. 2025 Jan 5;46(1):e70006. doi: 10.1002/jcc.70006.
Hydrogen gas (H) can be produced via entirely solar-driven photocatalytic water splitting (PWS). A promising set of organic materials for facilitating PWS are the so-called inverted singlet-triplet, INVEST, materials. Inversion of the singlet (S) and triplet (T) energies reduces the population of triplet states, which are otherwise destructive under photocatalytic conditions. Moreover, when INVEST materials possess dark S states, the excited state lifetimes are maximized, facilitating energy transfer to split water. In the context of solar-driven processes, it is also desirable that these INVEST materials absorb near the solar maximum. Many aza-triangulenes possess the desired INVEST property, making it beneficial to describe an approach for systematically and efficiently predicting the INVEST property as well as properties that make for efficient photocatalytic water splitting, while exploring the large chemical space of the aza-triangulenes. Here, we utilize machine learning to generate post hoc corrections to simplified Tamm-Dancoff approximation density functional theory (sTDA-DFT) for singlet and triplet excitation energies that are within 28-50 meV of second-order algebraic diagrammatic construction, ADC(2), as well as the singlet-to-triplet, ΔE, gaps of PWS systems. Our Δ-ML model is able to recall 85% of the systems identified by ADC(2) as candidates for PWS. Further, with a modest database of ADC(2) excitation energies of 4025 aza-triangulenes, we identified 78 molecules suitable for entirely solar-driven PWS.
氢气(H₂)可通过完全由太阳能驱动的光催化水分解(PWS)来产生。一类有前景的用于促进光催化水分解的有机材料是所谓的反转单重态-三重态(INVEST)材料。单重态(S)和三重态(T)能量的反转减少了三重态的数量,否则在光催化条件下三重态具有破坏性。此外,当INVEST材料具有暗单重态时,激发态寿命会最大化,有利于能量转移以分解水。在太阳能驱动过程的背景下,这些INVEST材料在接近太阳能最大值处吸收光也是很理想的。许多氮杂三角烯具有所需的INVEST性质,因此描述一种系统且高效地预测INVEST性质以及有助于高效光催化水分解的性质的方法是有益的,同时探索氮杂三角烯的广阔化学空间。在此,我们利用机器学习对单重态和三重态激发能的简化塔姆-丹科夫近似密度泛函理论(sTDA-DFT)进行事后校正,使其与二阶代数图示构建(ADC(2))的误差在28 - 50毫电子伏特以内,同时校正光催化水分解(PWS)系统的单重态到三重态的能隙ΔE。我们的Δ-ML模型能够召回ADC(2)识别出的作为光催化水分解候选材料的85%的系统。此外,利用4025种氮杂三角烯的ADC(2)激发能的适度数据库,我们确定了78种适用于完全由太阳能驱动的光催化水分解的分子。