Shen Dongfang, Lan Feng, Wang Luyang, Song Tianyang, Yang Munan, Hu Tianyu, Li Yueting, Nie Xiaolei, Yang Jiayao, Liang Shixiong, Zeng Hongxin, Zhang Hui-Fang, Mazumder Pinaki, Yang Ziqiang, Zhang Yaxin, Cui Tie Jun
Sichuan THz Communication Technology Engineering Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313000, China.
Light Sci Appl. 2025 Jan 1;14(1):13. doi: 10.1038/s41377-024-01690-0.
Boasting superior flexibility in beam manipulation and a simpler framework than traditional phased arrays, terahertz metasurface-based phased arrays show great promise for 5G-A/6G communication networks. Compared with the reflective reconfigurable intelligent surface (reflective RIS), the transmissive RIS (TRIS) offers more feasibility for transceiver multiplexing systems to meet the growing demand for high-performance beam tracking in terahertz communication and radar systems. However, the terahertz TRIS encounters greater challenges in phase shift, beam efficiency, and complex circuitry. Here, we propose a sub-terahertz TRIS based on the phase shift via Pancharatnam-Berry (PB) metasurface and self-on-off keying (OOK) modulation via Schottky diodes. The electrically reconfigurable unit cell consists of a column-wise phase resonator and a rectangular slot. An experimental retrieved equivalent lumped-element circuit model is implemented in joint field-circuit simulations and is validated by experiments. A fabricated prototype demonstrates excellent performance of TRIS with the minimum insertion loss of 2.8 dB for operational states, large bandwidth nearly covering the entire W-band for 1-bit phase shift, deep OOK amplitude modulation of 12 dB, and wide scanning range of ±60° with low specular transmission. We further implement an integrated platform combining high-speed beam steering and spatial-light modulation, verifying the point-to-point signal transmissions in different directions using the TRIS platform. The proposed TRIS with high-performance and cost-effective fabrication makes it a promising solution to terahertz minimalist communication systems, radar, and satellite communication systems.
基于太赫兹超表面的相控阵在波束操纵方面具有卓越的灵活性,且框架比传统相控阵更简单,在5G-A/6G通信网络中展现出巨大潜力。与反射型可重构智能表面(反射型RIS)相比,透射型RIS(TRIS)为收发器复用系统提供了更高的可行性,以满足太赫兹通信和雷达系统中对高性能波束跟踪不断增长的需求。然而,太赫兹TRIS在相移、波束效率和复杂电路方面面临更大挑战。在此,我们提出一种基于潘查拉特纳姆-贝里(PB)超表面相移和肖特基二极管自开关键控(OOK)调制的亚太赫兹TRIS。电可重构单元由一个列向相位谐振器和一个矩形缝隙组成。在联合场路仿真中实现了一个实验提取的等效集总元件电路模型,并通过实验进行了验证。一个制作的原型展示了TRIS的卓越性能,工作状态下最小插入损耗为2.8dB,1位相移时带宽几乎覆盖整个W波段,OOK幅度调制深度为12dB,具有±60°的宽扫描范围且镜面透射率低。我们进一步实现了一个结合高速波束转向和空间光调制的集成平台,使用TRIS平台验证了不同方向的点对点信号传输。所提出的具有高性能和经济高效制造的TRIS使其成为太赫兹极简通信系统、雷达和卫星通信系统的一个有前途的解决方案。