Devi D Sharda, Mohapatra Nihar R
Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382055, India.
ACS Omega. 2024 Dec 13;9(51):50634-50641. doi: 10.1021/acsomega.4c08463. eCollection 2024 Dec 24.
This work presents a density functional theory (DFT) study of substitutional and adsorption-based halogen (I or F) doping of WS-based transistors to enhance their contact properties. Substitutional doping of the WS monolayer with halogens results in -type behavior, while halogen adsorption on the surface of the WS monolayer induces -type behavior. This is attributed to differing directions of charge flow, as supported by the Mulliken analysis. However, due to Fermi-level pinning (FLP) at the WS-metal interface, the -type behavior resulting from halogen adsorption is not very prominent. To achieve better -type contact, intermediate layers of graphene and h-BN are used to mitigate the FLP effect, showing significant improvement. The F-adsorbed WS-graphene-Pt interface demonstrates excellent -type contact with a substantial reduction in the hole Schottky barrier height, making it ideal for efficient WS-based -type MOS transistors in CMOS technology.
这项工作提出了一项基于密度泛函理论(DFT)的研究,即通过基于替代和吸附的卤素(I或F)掺杂来改善基于WS的晶体管的接触特性。用卤素对WS单层进行替代掺杂会导致n型行为,而在WS单层表面吸附卤素会诱导p型行为。这归因于电荷流动方向的不同,穆利肯分析支持了这一点。然而,由于WS与金属界面处的费米能级钉扎(FLP),卤素吸附导致的p型行为不是很显著。为了实现更好的p型接触,使用石墨烯和h-BN中间层来减轻FLP效应,显示出显著的改善。F吸附的WS-石墨烯-Pt界面表现出优异的p型接触,空穴肖特基势垒高度大幅降低,使其成为CMOS技术中高效基于WS的p型MOS晶体管的理想选择。