Letellier Noemie, Hale Maren, Salim Kasem U, Ma Yiqun, Rerolle Francois, Schwarz Lara, Benmarhnia Tarik
Scripps Institution of Oceanography, University of California San Diego, La Jolla, California.
Irset Institut de Recherche en Santé, Environnement et Travail, UMR-S 1085, Inserm, University of Rennes, EHESP, Rennes, France.
Environ Epidemiol. 2024 Dec 31;9(1):e362. doi: 10.1097/EE9.0000000000000362. eCollection 2025 Feb.
Extreme weather events, including wildfires, are becoming more intense, frequent, and expansive due to climate change, thus increasing negative health outcomes. However, such effects can vary across space, time, and population subgroups, requiring methods that can handle multiple exposed units, account for time-varying confounding, and capture heterogeneous treatment effects. In this article, we proposed an approach based on staggered generalized synthetic control methods to study heterogeneous health effects, using the 2018 California wildfire season as a case study. This study aimed to estimate the effects of the November 2018 California wildfires, one of the state's deadliest and most destructive wildfire seasons, on respiratory and circulatory health, document heterogeneity in health impacts, and investigate drivers of this heterogeneity. We applied a two-stage generalized synthetic control method to compare health outcomes in exposed (from 8 November to 5 December 2018) versus unexposed counties and used random-effects meta-regression to evaluate the effect modification of county-level socioeconomic variables on the observed health effects of the November 2018 wildfires. We observed an increase in respiratory hospitalizations for most exposed counties when compared with unexposed counties, with significant increases in Fresno, San Francisco, San Joaquin, San Mateo, and Santa Clara counties. No effect on circulatory hospitalizations was observed. County-level sociodemographic characteristics seem to not modulate the effects of wildfire smoke on respiratory hospitalizations. This novel two-stage framework can be applied in broader settings to understand spatially and temporally compounded health impacts of climate hazards. We provide codes in R for reproducibility and replication purposes.
包括野火在内的极端天气事件,正因气候变化而变得愈发强烈、频繁且范围扩大,从而增加了对健康的负面影响。然而,此类影响在空间、时间和人群亚组中可能存在差异,这就需要能够处理多个暴露单元、考虑随时间变化的混杂因素并捕捉异质性治疗效果的方法。在本文中,我们提出了一种基于交错广义合成控制方法的途径,以研究异质性健康影响,并将2018年加利福尼亚野火季作为案例研究。本研究旨在估计2018年11月加利福尼亚野火(该州最致命且最具破坏性的野火季之一)对呼吸和循环系统健康的影响,记录健康影响的异质性,并调查这种异质性的驱动因素。我们应用两阶段广义合成控制方法来比较暴露县(2018年11月8日至12月5日)与未暴露县的健康结果,并使用随机效应元回归来评估县级社会经济变量对2018年11月野火观察到的健康影响的效应修正。与未暴露县相比,我们观察到大多数暴露县的呼吸科住院人数有所增加,弗雷斯诺、旧金山、圣华金、圣马特奥和圣克拉拉县的增加尤为显著。未观察到对循环系统住院人数的影响。县级社会人口特征似乎并未调节野火烟雾对呼吸科住院人数的影响。这种新颖的两阶段框架可应用于更广泛的场景,以了解气候灾害在空间和时间上的复合健康影响。我们提供了R代码,以便于重现和复制研究结果。