Liu Lili, Zang Miaoliang, Li Lei, Zhang Yunkai, Wang Leyuan, Zhou Xiaojing, Xin Chunling, Tai Xishi
School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, China.
Sci Rep. 2025 Jan 2;15(1):448. doi: 10.1038/s41598-024-84707-3.
Selective hydrogenation of 1,3-butadiene is a crucial industrial process for the removing of 1,3-butadiene, a byproduct of butene production. Developing catalysts with high catalytic performance for the hydrogenation of 1,3-butadiene at low temperatures has become a research hotspot. In this study, bimetallic Pd-Co catalysts supported on AlO derived from MIL-53(Al) at various calcination temperatures were synthesised via the co-impregnation method. These catalysts were structurally characterised using powder X-ray diffraction, thermogravimetric analysis, N adsorption-desorption, X-ray photoelectron spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and inductively coupled plasma optical emission spectroscopy techniques. The characterisations revealed that Pd-Co nanoparticles, averaging 8.5-12.4 nm, were highly dispersed on AlO derived from MIL-53(Al). The effects of reaction temperature, Pd and Co contents, space velocity, and calcination temperature on the catalytic performance for the hydrogenation of 1,3-butadiene were thoroughly investigated. The PdCo/MIL-53(Al)-A700 catalyst exhibited the highest catalytic activity for the hydrogenation of 1,3-butadiene at 40 °C and a space velocity of 900 L/(h·g). This catalyst demonstrated a strong synergistic interaction between Pd and Co nanoparticles, resulting in considerably better catalytic performance than the monometallic Pd catalyst under the same conditions. The PdCo/MIL-53(Al)-A700 catalyst achieved superior 1,3-butadiene conversion and total butene selectivity compared to the Pd/MIL-53(Al)-A700 catalyst. In addition, the PdCo/MIL-53(Al)-A700 catalyst maintained its catalytic activity and total butene selectivity after three regenerations in a flow of N at 200 °C. This work proposed a new pathway to design efficient and sustainable catalysts for 1,3-butadiene hydrogenation.
1,3-丁二烯的选择性加氢是去除丁烯生产副产物1,3-丁二烯的关键工业过程。开发在低温下对1,3-丁二烯加氢具有高催化性能的催化剂已成为研究热点。在本研究中,通过共浸渍法合成了在不同煅烧温度下负载于源自MIL-53(Al)的AlO上的双金属Pd-Co催化剂。使用粉末X射线衍射、热重分析、N吸附-脱附、X射线光电子能谱、透射电子显微镜、能量色散X射线光谱和电感耦合等离子体发射光谱技术对这些催化剂进行了结构表征。表征结果表明,平均粒径为8.5-12.4 nm的Pd-Co纳米颗粒高度分散在源自MIL-53(Al)的AlO上。深入研究了反应温度、Pd和Co含量、空速以及煅烧温度对1,3-丁二烯加氢催化性能的影响。PdCo/MIL-53(Al)-A700催化剂在40°C和900 L/(h·g)的空速下对1,3-丁二烯加氢表现出最高的催化活性。该催化剂在Pd和Co纳米颗粒之间表现出强烈的协同相互作用,在相同条件下比单金属Pd催化剂具有显著更好的催化性能。与Pd/MIL-53(Al)-A700催化剂相比,PdCo/MIL-53(Al)-A700催化剂实现了更高的1,3-丁二烯转化率和总丁烯选择性。此外,PdCo/MIL-53(Al)-A700催化剂在200°C的N气流中经过三次再生后仍保持其催化活性和总丁烯选择性。这项工作为设计用于1,3-丁二烯加氢的高效且可持续的催化剂提出了一条新途径。