Suppr超能文献

超快合成富氧空位的MgFeSiO阴极以促进可充电镁离子电池的扩散动力学

Ultrafast Synthesis of Oxygen Vacancy-Rich MgFeSiO Cathode to Boost Diffusion Kinetics for Rechargeable Magnesium-Ion Batteries.

作者信息

Xu Jie, Hong Yuqi, Dou Shuming, Wu Junhan, Zhang Jingchao, Wang Qingmeng, Wen Tiantian, Song Yang, Liu Wei-Di, Zeng Jianrong, Huang Guangsheng, Xu Chaohe, Chen Yanan, Yue Jili, Wang Jingfeng, Pan Fusheng

机构信息

National Innovation Center for Industry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.

Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401122, China.

出版信息

Nano Lett. 2025 Jan 15;25(2):730-739. doi: 10.1021/acs.nanolett.4c04908. Epub 2025 Jan 3.

Abstract

Rechargeable magnesium ion batteries (RMBs) have drawn extensive attention due to their high theoretical volumetric capacity and low safety hazards. However, divalent Mg ions suffer sluggish mobility in cathodes owing to the high charge density and slow insertion/extraction kinetics. Herein, it is shown that an ultrafast nonequilibrium high-temperature shock (HTS) method with a high heating/quenching rate can instantly introduce oxygen vacancies into the olivine-structured MgFeSiO cathode (MgFeSiO-HTS) in seconds. As a proof of concept, the MgFeSiO-HTS exhibits a higher electrochemical property and fast insertion/extraction kinetics in comparison to those prepared from the conventional sintering method. The MgFeSiO-HTS displays remarkable long-term cycling lifespan properties with a reversible capacity of 85.65 and 54.43 mAh g over 500 and 1600 cycles at 2 and 5 C, respectively. Additionally, by combining the electrochemical experiments and density functional theory calculations, oxygen vacancies can weaken the interaction and energy barrier between the Mg ions and the cathode, enhancing the Mg diffusion kinetics.

摘要

可充电镁离子电池(RMBs)因其高理论体积容量和低安全风险而备受广泛关注。然而,由于二价镁离子的高电荷密度和缓慢的嵌入/脱出动力学,其在阴极中的迁移速度较慢。在此,研究表明,一种具有高加热/淬火速率的超快非平衡高温冲击(HTS)方法能够在数秒内将氧空位瞬间引入到橄榄石结构的MgFeSiO阴极(MgFeSiO-HTS)中。作为概念验证,与传统烧结方法制备的阴极相比,MgFeSiO-HTS表现出更高的电化学性能和快速的嵌入/脱出动力学。MgFeSiO-HTS分别在2C和5C下经过500次和1600次循环后,展现出显著的长期循环寿命性能,可逆容量分别为85.65和54.43 mAh g。此外,通过结合电化学实验和密度泛函理论计算,氧空位可以削弱镁离子与阴极之间的相互作用和能垒,增强镁的扩散动力学。

相似文献

1
Ultrafast Synthesis of Oxygen Vacancy-Rich MgFeSiO Cathode to Boost Diffusion Kinetics for Rechargeable Magnesium-Ion Batteries.
Nano Lett. 2025 Jan 15;25(2):730-739. doi: 10.1021/acs.nanolett.4c04908. Epub 2025 Jan 3.
2
Anionic Se-Substitution toward High-Performance CuS Se Nanosheet Cathode for Rechargeable Magnesium Batteries.
Small. 2019 Oct;15(42):e1902797. doi: 10.1002/smll.201902797. Epub 2019 Aug 28.
5
Ultralong-Lifespan Magnesium Batteries Enabled by the Synergetic Manipulation of Oxygen Vacancies and Electronic Conduction.
ACS Appl Mater Interfaces. 2021 Mar 17;13(10):12049-12058. doi: 10.1021/acsami.1c00170. Epub 2021 Mar 5.
6
Water-Pillared Sodium Vanadium Bronze Nanowires for Enhanced Rechargeable Magnesium Ion Storage.
Small. 2020 Jul;16(30):e2000741. doi: 10.1002/smll.202000741. Epub 2020 Jun 23.
9
Ultrafast Non-Equilibrium Synthesis of Cathode Materials for Li-Ion Batteries.
Adv Mater. 2023 Jan;35(2):e2208974. doi: 10.1002/adma.202208974. Epub 2022 Nov 30.
10
A Covalent Organic Framework for Fast-Charge and Durable Rechargeable Mg Storage.
Nano Lett. 2020 May 13;20(5):3880-3888. doi: 10.1021/acs.nanolett.0c01040. Epub 2020 Apr 27.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验