Suppr超能文献

线性光学中预告量子比特格林伯格-霍恩-泽林格态的指数增强方案。

Exponentially Enhanced Scheme for the Heralded Qudit Greenberger-Horne-Zeilinger State in Linear Optics.

作者信息

Chin Seungbeom, Ryu Junghee, Kim Yong-Su

机构信息

<a href="https://ror.org/02qg15b79">Okinawa Institute of Science and Technology Graduate University</a>, Okinawa 904-0495, Japan and Department of Electrical and Computer Engineering, <a href="https://ror.org/04q78tk20">Sungkyunkwan University</a>, Suwon 16419, Korea.

Center for Quantum Information Research and Development, <a href="https://ror.org/01k4yrm29">Korea Institute of Science and Technology Information</a>, Daejeon 34141, Korea and Division of Quantum Information, KISTI School, <a href="https://ror.org/000qzf213">Korea University of Science and Technology</a>, Daejeon 34141, Korea.

出版信息

Phys Rev Lett. 2024 Dec 20;133(25):253601. doi: 10.1103/PhysRevLett.133.253601.

Abstract

High-dimensional multipartite entanglement plays a crucial role in quantum information science. However, existing schemes for generating such entanglement become complex and costly as the dimension of quantum units increases. In this Letter, we overcome the limitation by proposing a significantly enhanced linear optical heralded scheme that generates the d-level N-partite Greenberger-Horne-Zeilinger (GHZ) state with single-photon sources and linear operations. Our scheme requires dN photons, which is the minimal required photon number, with substantially improved success probability from previous schemes. It employs linear optical logic gates compatible with any qudit encoding system and can generate generalized GHZ states with installments of beam splitters. With efficient generations of high-dimensional resource states, our work opens avenues for further exploration in high-dimensional quantum information processing.

摘要

高维多方纠缠在量子信息科学中起着至关重要的作用。然而,随着量子单元维度的增加,现有的产生这种纠缠的方案变得复杂且成本高昂。在本论文中,我们通过提出一种显著增强的线性光学预示方案克服了这一限制,该方案利用单光子源和线性操作生成d能级的N方格林伯格 - 霍恩 - 泽林格(GHZ)态。我们的方案需要dN个光子,这是所需的最小光子数,并且与先前方案相比成功概率有显著提高。它采用与任何量子位编码系统兼容的线性光学逻辑门,并且可以通过分束器的级联生成广义GHZ态。通过高效生成高维资源态,我们的工作为高维量子信息处理的进一步探索开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验