Huang Lushan, Ma Liyi, Zhu Qichen, Wang Hongyuan, She Guangwei, Shi Wensheng, Mu Lixuan
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Chem Neurosci. 2025 Jan 15;16(2):223-231. doi: 10.1021/acschemneuro.4c00770. Epub 2025 Jan 6.
Endoplasmic reticulum (ER) stress and autophagy (ER-phagy) occurring in nerve cells are crucial physiological processes closely associated with Alzheimer's disease (AD). Visualizing the two processes is paramount to advance our understanding of AD pathologies. Among the biomarkers identified, peroxynitrite (ONOO) emerges as a key molecule in the initiation and aggravation of ER stress and ER-phagy, highlighting its significance in the underlying mechanisms of the two processes. In this work, we designed and synthesized an innovative ONOO-responsive AIEgen-based fluorescent probe (DHQM) with the ability to monitor ER stress and ER-phagy in AD model cells. DHQM demonstrated excellent aggregation-induced emission (AIE) properties, endowing it with outstanding ability for washing-free intracellular imaging. Meanwhile, it exhibited high sensitivity, remarkable selectivity to ONOO, and exceptional ER-targeting ability. The probe was successfully applied for fluorescence imaging of ER ONOO fluctuations to assess the ER stress status in aluminum-induced AD model cells. Our findings revealed that aluminum-induced ferroptosis, a regulated cell death process, was pivotal in the excessive ONOO production, which in turn activated and exacerbated ER stress. Furthermore, the aluminum-stimulated ER-phagy was observed utilizing DHQM, which might be crucial in inhibiting ferroptosis and mitigating aberrant ER stress. Overall, this study not only offers valuable insights into the pathological mechanisms of AD at the ER level but also opens new potential therapeutic avenues targeting these pathways.
神经细胞中发生的内质网(ER)应激和自噬(ER自噬)是与阿尔茨海默病(AD)密切相关的关键生理过程。可视化这两个过程对于增进我们对AD病理的理解至关重要。在已鉴定的生物标志物中,过氧亚硝酸盐(ONOO)成为ER应激和ER自噬起始及加重过程中的关键分子,凸显了其在这两个过程潜在机制中的重要性。在这项工作中,我们设计并合成了一种基于具有聚集诱导发光(AIE)特性的创新型ONOO响应荧光探针(DHQM),它能够监测AD模型细胞中的ER应激和ER自噬。DHQM表现出优异的聚集诱导发光(AIE)特性,赋予其出色的免洗细胞内成像能力。同时,它具有高灵敏度、对ONOO的显著选择性以及卓越的内质网靶向能力。该探针成功应用于内质网ONOO波动的荧光成像,以评估铝诱导的AD模型细胞中的内质网应激状态。我们的研究结果表明,铝诱导的铁死亡(一种受调控的细胞死亡过程)在过量ONOO产生中起关键作用,进而激活并加剧内质网应激。此外,利用DHQM观察到铝刺激的ER自噬,这可能在抑制铁死亡和减轻异常内质网应激方面至关重要。总体而言,本研究不仅为AD在内质网水平的病理机制提供了有价值的见解,还开辟了针对这些途径的新的潜在治疗途径。