Suppr超能文献

一种基于FCEEMD的多复杂度低维特征与有向无环图LSTSVM的新型故障诊断方法

A Novel Fault Diagnosis Method Using FCEEMD-Based Multi-Complexity Low-Dimensional Features and Directed Acyclic Graph LSTSVM.

作者信息

Lu Rongrong, Xu Miao, Zhou Chengjiang, Zhang Zhaodong, Tan Kairong, Sun Yuhuan, Wang Yuran, Mao Min

机构信息

School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China.

Faculty of Information Engineering, Quzhou College of Technology, Quzhou 324000, China.

出版信息

Entropy (Basel). 2024 Nov 29;26(12):1031. doi: 10.3390/e26121031.

Abstract

Rolling bearings, as critical components of rotating machinery, significantly influence equipment reliability and operational efficiency. Accurate fault diagnosis is therefore crucial for maintaining industrial production safety and continuity. This paper presents a new fault diagnosis method based on FCEEMD multi-complexity low-dimensional features and directed acyclic graph LSTSVM. The Fast Complementary Ensemble Empirical Mode Decomposition (FCEEMD) method is applied to decompose vibration signals, effectively reducing background noise. Nonlinear complexity features are then extracted, including sample entropy (SE), permutation entropy (PE), dispersion entropy (DE), Gini coefficient, the square envelope Gini coefficient (SEGI), and the square envelope spectral Gini coefficient (SESGI), enhancing the capture of the signal complexity. In addition, 16 time-domain and 13 frequency-domain features are used to characterize the signal, forming a high-dimensional feature matrix. Robust unsupervised feature selection with local preservation (RULSP) is employed to identify low-dimensional sensitive features. Finally, a multi-classifier based on DAG LSTSVM is constructed using the directed acyclic graph (DAG) strategy, improving fault diagnosis precision. Experiments on both laboratory bearing faults and industrial check valve faults demonstrate nearly 100% diagnostic accuracy, highlighting the method's effectiveness and potential.

摘要

滚动轴承作为旋转机械的关键部件,对设备可靠性和运行效率有重大影响。因此,准确的故障诊断对于维持工业生产安全和连续性至关重要。本文提出了一种基于FCEEMD多复杂度低维特征和有向无环图LSTSVM的新型故障诊断方法。应用快速互补总体经验模态分解(FCEEMD)方法对振动信号进行分解,有效降低背景噪声。然后提取非线性复杂度特征,包括样本熵(SE)、排列熵(PE)、离散熵(DE)、基尼系数、平方包络基尼系数(SEGI)和平方包络谱基尼系数(SESGI),增强对信号复杂度的捕捉。此外,使用16个时域特征和13个频域特征来表征信号,形成一个高维特征矩阵。采用具有局部保持的稳健无监督特征选择(RULSP)来识别低维敏感特征。最后,使用有向无环图(DAG)策略构建基于DAG LSTSVM的多分类器,提高故障诊断精度。对实验室轴承故障和工业止回阀故障的实验表明,诊断准确率接近100%,突出了该方法的有效性和潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7a4/11727493/becf4378ccc4/entropy-26-01031-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验