Suppr超能文献

基于具有聚集诱导发光活性的铱(III)配合物的磷光传感器用于挥发性酸的简便检测

Phosphorescent Sensor Based on Iridium(III) Complex with Aggregation-Induced Emission Activity for Facile Detection of Volatile Acids.

作者信息

Pei Yu, Sun Yan, Zhu Dongxia

机构信息

Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.

出版信息

Molecules. 2024 Dec 22;29(24):6041. doi: 10.3390/molecules29246041.

Abstract

Phosphorescent sensors are essential for rapid visual sensing of volatile acids, due to their profound impact on ecosystems and human health. However, solid phosphorescent materials for acid-base stimulus response are still rare, and it is important to achieve real-time monitoring of volatile acids. In order to obtain an efficient and rapid response to volatile acid stimulation, N-H and -NH substituents are introduced into an auxiliary ligand to synthesize a new cationic Ir(III) complex (). The AIE property of leads to enhanced emission in the aggregated state, which facilitates the construction of solid-state acid-base sensors. More importantly, due to the introduction of -NH and N-H in the molecular structure, reversible switching of the emission color of under acid-base stimulation was successfully achieved. A convenient and efficient sensing device for volatile acid monitoring was prepared using as the active material. Our results provide a new strategy for designing phosphorescent materials with AIE and acid-base stimulus-responsive properties.

摘要

由于挥发性酸对生态系统和人类健康有深远影响,磷光传感器对于挥发性酸的快速视觉传感至关重要。然而,用于酸碱刺激响应的固体磷光材料仍然很少,实现对挥发性酸的实时监测很重要。为了获得对挥发性酸刺激的高效快速响应,将N-H和-NH取代基引入辅助配体以合成一种新的阳离子Ir(III)配合物()。的聚集诱导发光(AIE)特性导致其在聚集状态下发射增强,这有利于固态酸碱传感器的构建。更重要的是,由于在分子结构中引入了-NH和N-H,成功实现了在酸碱刺激下发射颜色的可逆切换。以作为活性材料制备了一种用于挥发性酸监测的便捷高效传感装置。我们的结果为设计具有AIE和酸碱刺激响应特性的磷光材料提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b62/11677296/45927fb8414e/molecules-29-06041-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验