Wang Zhao, Zhang Weixiong, Zhao Zhitao, Tang Ping, Zhang Zheng
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.
School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
Sensors (Basel). 2024 Dec 11;24(24):7908. doi: 10.3390/s24247908.
In the rapidly developing field of wireless communications, the precise classification of modulated signals is essential for optimizing spectrum utilization and improving communication quality. However, existing networks face challenges in robustness against signals containing phase shift keying and computational efficiency. This paper introduces TCN-GRU, a lightweight model that combines the advantages of multiscale feature extraction of the temporal convolutional network (TCN) and global sequence modeling of gated recurrent unit (GRU). Compared to the state-of-the-art MCLDNN, TCN-GRU reduces parameters by 37.6%, achieving an accuracy of 0.6156 and 0.6466 on the RadioML2016.10a and RadioML2016.10b, respectively (versus MCLDNN's 0.6101 and 0.6462). Furthermore, TCN-GRU demonstrates superior ability in distinguishing challenging modulations such as QAM16 and QAM64, and it improves classification accuracy by about 10.5% compared to MCLDNN. These results suggest that TCN-GRU is a robust and efficient solution for enhancing AMC in complex and noisy environments.
在快速发展的无线通信领域,调制信号的精确分类对于优化频谱利用和提高通信质量至关重要。然而,现有网络在抵抗包含相移键控的信号以及计算效率方面面临挑战。本文介绍了TCN-GRU,这是一种轻量级模型,它结合了时间卷积网络(TCN)的多尺度特征提取优势和门控循环单元(GRU)的全局序列建模优势。与最先进的MCLDNN相比,TCN-GRU的参数减少了37.6%,在RadioML2016.10a和RadioML2016.10b上分别达到了0.6156和0.6466的准确率(相比之下,MCLDNN的准确率分别为0.6101和0.6462)。此外,TCN-GRU在区分诸如QAM16和QAM64等具有挑战性的调制方面表现出卓越能力,与MCLDNN相比,其分类准确率提高了约10.5%。这些结果表明,TCN-GRU是在复杂和嘈杂环境中增强自适应调制编码(AMC)的一种强大且高效的解决方案。