Wang Sen, Zong Heng, Tang Lei, Wei Yuandong
Department of Medical Oncology, Anhui No.2 Provincial People's Hospital, Hefei, China.
Biomol Biomed. 2025 May 8;25(7):1601-1609. doi: 10.17305/bb.2024.11583.
Totally implantable subcutaneous venous access ports (TISVAPs) are essential for long-term central venous chemotherapy, delivering medication directly into the central veins of patients. While they play a critical role in reducing patient discomfort, TISVAPs pose a notable risk of post-insertion infections-particularly concerning for oncology patients with compromised immune systems due to aggressive treatment regimens. Our research addresses this issue by developing a predictive nomogram to estimate the risk of TISVAP-associated infections. The model is based on independent risk factors identified in our study: a history of diabetes, the type of chemotherapy, peripheral blood leukocyte count (WBC), and serum albumin levels. Using retrospective clinical data from 309 oncology patients who underwent TISVAP implantation at a tertiary A-grade comprehensive hospital, we divided the dataset into training (n = 246) and validation (n = 63) subsets. Through logistic and Lasso regression analyses, we identified the independent risk factors associated with infections. The resulting interactive nomogram demonstrated strong accuracy and reliability, with C-indexes of 0.82 and 0.835 for the training and validation sets, respectively. This tool equips healthcare providers to proactively identify high-risk patients and tailor preventive strategies accordingly. Ultimately, our research aims to enhance patient outcomes and improve the quality of life for those undergoing long-term venous chemotherapy.
完全植入式皮下静脉通路端口(TISVAPs)对于长期中心静脉化疗至关重要,可将药物直接输送到患者的中心静脉。虽然它们在减轻患者不适方面发挥着关键作用,但TISVAPs在插入后存在显著的感染风险,对于因积极治疗方案而免疫系统受损的肿瘤患者而言尤其令人担忧。我们的研究通过开发一种预测列线图来估计TISVAP相关感染的风险,从而解决了这个问题。该模型基于我们研究中确定的独立风险因素:糖尿病史、化疗类型、外周血白细胞计数(WBC)和血清白蛋白水平。利用一家三级甲等综合医院309例接受TISVAP植入的肿瘤患者的回顾性临床数据,我们将数据集分为训练集(n = 246)和验证集(n = 63)。通过逻辑回归和套索回归分析,我们确定了与感染相关的独立风险因素。由此产生的交互式列线图显示出很强的准确性和可靠性,训练集和验证集的C指数分别为0.82和0.835。这个工具使医疗保健提供者能够主动识别高危患者,并相应地制定预防策略。最终,我们的研究旨在改善患者的治疗效果,并提高接受长期静脉化疗患者的生活质量。