Kim Daniel, Fang Raymond, Zhang Pengpeng, Yan Zihang, Sun Cheng, Li Guorong, Montgomery Christa, John Simon W M, Stamer W Daniel, Zhang Hao F, Ethier C Ross
Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States.
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States.
Invest Ophthalmol Vis Sci. 2025 Jan 2;66(1):18. doi: 10.1167/iovs.66.1.18.
Aqueous humor inflow rate, a key parameter influencing aqueous humor dynamics, is typically measured by fluorophotometry. Analyzing fluorophotometric data depends, inter alia, on the volume of aqueous humor in the anterior chamber but not the posterior chamber. Previous fluorophotometric studies of the aqueous inflow rate in mice have assumed the ratio of anterior:posterior volumes in mice to be similar to those in humans. Our goal was to measure anterior and posterior chamber volumes in mice to facilitate better estimates of aqueous inflow rates.
We used standard near-infrared (NIR) optical coherence tomography (OCT) and robotic visible-light OCT (vis-OCT) to visualize, reconstruct, and quantify the volumes of the anterior and posterior chambers of the mouse eye in vivo. We used histology and micro-computed tomography (CT) scans to validate relevant landmarks from ex vivo tissues and facilitate in vivo measurement.
Posterior chamber volume is 1.1 times the anterior chamber volume in BALB/cAnNCrl mice, that is, the anterior chamber constitutes about 47% of the total aqueous humor volume, which is very dissimilar to the situation in humans. Anterior chamber volumes in 2-month-old BALB/cAnNCrl and C57BL6/J mice were 1.55 ± 0.36 µL (n = 10) and 2.05 ± 0.25 µL (n = 10), respectively. This implies that previous studies likely overestimated the aqueous inflow rate by approximately twofold.
It is necessary to reassess previously reported estimates of aqueous inflow rates and, thus, aqueous humor dynamics in the mouse. For example, we now estimate that only 0% to 15% of aqueous humor drains via the pressure-independent (unconventional) route, similar to that seen in humans and monkeys.
房水流入速率是影响房水动力学的关键参数,通常通过荧光光度法进行测量。分析荧光光度数据尤其取决于前房而非后房的房水量。以往对小鼠房水流入速率的荧光光度研究假定小鼠前房与后房体积之比与人类相似。我们的目标是测量小鼠的前房和后房体积,以便更准确地估计房水流入速率。
我们使用标准近红外(NIR)光学相干断层扫描(OCT)和机器人可见光OCT(vis - OCT)在体内可视化、重建和量化小鼠眼睛前房和后房的体积。我们使用组织学和微型计算机断层扫描(CT)扫描来验证离体组织的相关标志点,并便于进行体内测量。
在BALB/cAnNCrl小鼠中,后房体积是前房体积的1.1倍,即前房约占房水总体积的47%,这与人类的情况非常不同。2个月大的BALB/cAnNCrl和C57BL6/J小鼠的前房体积分别为1.55±0.36微升(n = 10)和2.05±0.25微升(n = 10)。这意味着以往的研究可能将房水流入速率高估了约两倍。
有必要重新评估先前报道的小鼠房水流入速率估计值,进而重新评估小鼠的房水动力学。例如,我们现在估计只有0%至15%的房水通过压力无关(非常规)途径排出,这与人类和猴子的情况相似。