Suppr超能文献

登革病毒潜在抑制剂的机器学习与分子对接预测

Machine learning and molecular docking prediction of potential inhibitors against dengue virus.

作者信息

Hanson George, Adams Joseph, Kepgang Daveson I B, Zondagh Luke S, Tem Bueh Lewis, Asante Andy, Shirolkar Soham A, Kisaakye Maureen, Bondarwad Hem, Awe Olaitan I

机构信息

Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana.

Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon.

出版信息

Front Chem. 2024 Dec 24;12:1510029. doi: 10.3389/fchem.2024.1510029. eCollection 2024.

Abstract

INTRODUCTION

Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, and . While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques.

METHOD

Utilizing a dataset of 21,250 bioactive compounds from PubChem (AID: 651640), alongside a total of 1,444 descriptors generated using PaDEL, we trained various models such as Support Vector Machine, Random Forest, k-nearest neighbors, Logistic Regression, and Gaussian Naïve Bayes. The top-performing model was used to predict active compounds, followed by molecular docking performed using AutoDock Vina. The detailed interactions, toxicity, stability, and conformational changes of selected compounds were assessed through protein-ligand interaction studies, molecular dynamics (MD) simulations, and binding free energy calculations.

RESULTS

We implemented a robust three-dataset splitting strategy, employing the Logistic Regression algorithm, which achieved an accuracy of 94%. The model successfully predicted 18 known DENV inhibitors, with 11 identified as active, paving the way for further exploration of 2683 new compounds from the ZINC and EANPDB databases. Subsequent molecular docking studies were performed on the NS2B/NS3 protease, an enzyme essential in viral replication. ZINC95485940, ZINC38628344, 2',4'-dihydroxychalcone and ZINC14441502 demonstrated a high binding affinity of -8.1, -8.5, -8.6, and -8.0 kcal/mol, respectively, exhibiting stable interactions with His51, Ser135, Leu128, Pro132, Ser131, Tyr161, and Asp75 within the active site, which are critical residues involved in inhibition. Molecular dynamics simulations coupled with MMPBSA further elucidated the stability, making it a promising candidate for drug development.

CONCLUSION

Overall, this integrative approach, combining machine learning, molecular docking, and dynamics simulations, highlights the strength and utility of computational tools in drug discovery. It suggests a promising pathway for the rapid identification and development of novel antiviral drugs against DENV. These findings provide a strong foundation for future experimental validations and studies aimed at fighting DENV.

摘要

引言

由于登革热病毒传播媒介蚊子的广泛分布,登革热持续对全球构成威胁。虽然世界卫生组织批准的疫苗登革四价疫苗(Dengvaxia)以及抗病毒药物如巴洛匹韦(Balapiravir)和塞尔戈西韦(Celgosivir)已可供使用,但耐药性、疗效降低和治疗成本高等挑战依然存在。本研究旨在采用包括机器学习和分子对接技术在内的综合药物发现方法,识别登革热病毒(DENV)的新型潜在抑制剂。

方法

利用来自PubChem(AID:651640)的21250种生物活性化合物数据集,以及使用PaDEL生成的总共1444个描述符,我们训练了各种模型,如支持向量机、随机森林、k近邻、逻辑回归和高斯朴素贝叶斯。表现最佳的模型用于预测活性化合物,随后使用AutoDock Vina进行分子对接。通过蛋白质-配体相互作用研究、分子动力学(MD)模拟和结合自由能计算,评估所选化合物的详细相互作用、毒性、稳定性和构象变化。

结果

我们实施了一种稳健的三分集拆分策略,采用逻辑回归算法,准确率达到94%。该模型成功预测了18种已知的DENV抑制剂,其中11种被鉴定为活性抑制剂,为进一步探索来自ZINC和EANPDB数据库的2683种新化合物铺平了道路。随后对NS2B/NS3蛋白酶进行了分子对接研究,NS2B/NS3蛋白酶是病毒复制中必不可少的一种酶。ZINC95485940、ZINC38628344、2',4'-二羟基查耳酮和ZINC14441502分别表现出-8.1、-8.5、-8.6和-8.0 kcal/mol的高结合亲和力,与活性位点内的His51、Ser135、Leu128、Pro132、Ser131、Tyr161和Asp75表现出稳定的相互作用,这些都是参与抑制作用的关键残基。结合MMPBSA的分子动力学模拟进一步阐明了其稳定性,使其成为药物开发的有希望的候选物。

结论

总体而言,这种将机器学习、分子对接和动力学模拟相结合的综合方法,突出了计算工具在药物发现中的优势和实用性。它为快速识别和开发针对DENV的新型抗病毒药物提出了一条有希望的途径。这些发现为未来的实验验证和对抗DENV的研究提供了坚实的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88be/11703810/5f9014cc4fd5/fchem-12-1510029-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验