Mondal M Elious, Vamivakas A Nickolas, Cundiff Steven T, Krauss Todd D, Huo Pengfei
Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA.
J Chem Phys. 2025 Jan 7;162(1). doi: 10.1063/5.0243535.
We outline two general theoretical techniques to simulate polariton quantum dynamics and optical spectra under the collective coupling regimes described by a Holstein-Tavis-Cummings (HTC) model Hamiltonian. The first one takes advantage of sparsity of the HTC Hamiltonian, which allows one to reduce the cost of acting polariton Hamiltonian onto a state vector to the linear order of the number of states, instead of the quadratic order. The second one is applying the well-known Chebyshev series expansion approach for quantum dynamics propagation and to simulate the polariton dynamics in the HTC system; this approach allows us to use a much larger time step for propagation and only requires a few recursive operations of the polariton Hamiltonian acting on state vectors. These two theoretical approaches are general and can be applied to any trajectory-based non-adiabatic quantum dynamics methods. We apply these two techniques with our previously developed Lindblad-partially linearized density matrix approach to simulate the linear absorption spectra of the HTC model system, with both inhomogeneous site energy disorders and dipolar orientational disorders. Our numerical results agree well with the previous analytic and numerical work.
我们概述了两种通用的理论技术,用于在由荷斯坦 - 塔维斯 - 卡明斯(HTC)模型哈密顿量描述的集体耦合机制下模拟极化激元量子动力学和光谱。第一种利用了HTC哈密顿量的稀疏性,这使得将极化激元哈密顿量作用于态矢量的成本从态数的二次方阶降低到线性阶。第二种是应用著名的切比雪夫级数展开方法进行量子动力学传播,并模拟HTC系统中的极化激元动力学;这种方法使我们能够在传播中使用大得多的时间步长,并且只需要极化激元哈密顿量对态矢量进行几次递归操作。这两种理论方法具有通用性,可应用于任何基于轨迹的非绝热量子动力学方法。我们将这两种技术与我们之前开发的林德布拉德 - 部分线性化密度矩阵方法相结合,以模拟具有非均匀位点能量无序和偶极取向无序的HTC模型系统的线性吸收光谱。我们的数值结果与之前的解析和数值工作吻合良好。