Suppr超能文献

使用来自Transformer的双向编码器表示对头部计算机断层扫描报告进行分类时主动学习算法的比较。

Comparison of active learning algorithms in classifying head computed tomography reports using bidirectional encoder representations from transformers.

作者信息

Wataya Tomohiro, Miura Azusa, Sakisuka Takahisa, Fujiwara Masahiro, Tanaka Hisashi, Hiraoka Yu, Sato Junya, Tomiyama Miyuki, Nishigaki Daiki, Kita Kosuke, Suzuki Yuki, Kido Shoji, Tomiyama Noriyuki

机构信息

Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.

出版信息

Int J Comput Assist Radiol Surg. 2025 Apr;20(4):687-701. doi: 10.1007/s11548-024-03316-7. Epub 2025 Jan 8.

Abstract

PURPOSE

Systems equipped with natural language (NLP) processing can reduce missed radiological findings by physicians, but the annotation costs are burden in the development. This study aimed to compare the effects of active learning (AL) algorithms in NLP for estimating the significance of head computed tomography (CT) reports using bidirectional encoder representations from transformers (BERT).

METHODS

A total of 3728 head CT reports annotated with five categories of importance were used and UTH-BERT was adopted as the pre-trained BERT model. We assumed that 64% (2385 reports) of the data were initially in the unlabeled data pool (UDP), while the labeled data set (LD) used to train the model was empty. Twenty-five reports were repeatedly selected from the UDP and added to the LD, based on seven metrices: random sampling (RS: control), four uncertainty sampling (US) methods (least confidence (LC), margin sampling (MS), ratio of confidence (RC), and entropy sampling (ES)), and two distance-based sampling (DS) methods (cosine distance (CD) and Euclidian distance (ED)). The transition of accuracy of the model was evaluated using the test dataset.

RESULTS

The accuracy of the models with US was significantly higher than RS when reports in LD were < 1800, whereas DS methods were significantly lower than RS. Among the US methods, MS and RC were even better than the others. With the US methods, the required labeled data decreased by 15.4-40.5%, and most efficient in RC. In addition, in the US methods, data for minor categories tended to be added to LD earlier than RS and DS.

CONCLUSIONS

In the classification task for the importance of head CT reports, US methods, especially RC and MS can lead to the effective fine-tuning of BERT models and reduce the imbalance of categories. AL can contribute to other studies on larger datasets by providing effective annotation.

摘要

目的

配备自然语言处理(NLP)功能的系统可以减少医生遗漏的放射学检查结果,但注释成本是开发过程中的负担。本研究旨在比较主动学习(AL)算法在NLP中使用来自变换器的双向编码器表示(BERT)来评估头部计算机断层扫描(CT)报告重要性的效果。

方法

共使用了3728份标注了五类重要性的头部CT报告,并采用UTH-BERT作为预训练的BERT模型。我们假设64%(2385份报告)的数据最初在未标注数据集(UDP)中,而用于训练模型的标注数据集(LD)为空。基于七种指标,从UDP中反复选择25份报告并添加到LD中:随机抽样(RS:对照)、四种不确定性抽样(US)方法(最小置信度(LC)、边际抽样(MS)、置信度比(RC)和熵抽样(ES))以及两种基于距离的抽样(DS)方法(余弦距离(CD)和欧几里得距离(ED))。使用测试数据集评估模型准确性的变化。

结果

当LD中的报告数量<1800时,采用US方法的模型准确性显著高于RS,而DS方法显著低于RS。在US方法中,MS和RC甚至比其他方法更好。采用US方法时,所需的标注数据减少了15.4 - 40.5%,其中RC最有效。此外,在US方法中,小类别的数据往往比RS和DS更早地添加到LD中。

结论

在头部CT报告重要性的分类任务中,US方法,尤其是RC和MS可以有效微调BERT模型并减少类别不平衡。主动学习可以通过提供有效的注释为其他关于更大数据集的研究做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef82/12034600/4626657dd6b5/11548_2024_3316_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验