Suppr超能文献

使用语音识别和机器学习技术从姑息治疗患者的对话语音中检测患者报告的结果。

Using voice recognition and machine learning techniques for detecting patient-reported outcomes from conversational voice in palliative care patients.

作者信息

Dong Lei, Hirayama Hideyuki, Zheng XueJiao, Masukawa Kento, Miyashita Mitsunori

机构信息

Department of Palliative Nursing, Health Sciences, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.

出版信息

Jpn J Nurs Sci. 2025 Jan;22(1):e12644. doi: 10.1111/jjns.12644.

Abstract

AIM

Patient-reported outcome measures (PROMs) are increasingly used in palliative care to evaluate patients' symptoms and conditions. Healthcare providers often collect PROMs through conversations. However, the manual entry of these data into electronic medical records can be burdensome for healthcare providers. Voice recognition technology has been explored as a potential solution for alleviating this burden. However, research on voice recognition technology for palliative care is lacking. This study aimed to verify the use of voice recognition and machine learning to automatically evaluate PROMs using clinical conversation voice data.

METHODS

We recruited 100 home-based palliative care patients from February to May 2023, conducted interviews using the Integrated Palliative Care Outcome Scale (IPOS), and transcribed their voice data using an existing voice recognition tool. We calculated the recognition rate and developed a machine learning model for symptom detection. Model performance was primarily evaluated using the F1 score, harmonic mean of the model's positive predictive value, and recall.

RESULTS

The mean age of the patients was 80.6 years (SD, 10.8 years), and 34.0% were men. Thirteen patients had cancer, and 87 did not. The patient voice recognition rate of 55.6% (SD, 12.1%) was significantly lower than the overall recognition rate of 76.1% (SD, 6.4%). The F1 scores for the five total symptoms ranged from 0.31 to 0.46.

CONCLUSION

Although further improvements are necessary to enhance our model's performance, this study provides valuable insights into voice recognition and machine learning in clinical settings. We expect our findings will reduce the burden of recording PROMs on healthcare providers, increasing the wider use of PROMs.

摘要

目的

患者报告结局量表(PROMs)在姑息治疗中越来越多地用于评估患者的症状和状况。医疗保健提供者通常通过对话收集PROMs。然而,将这些数据手动录入电子病历对医疗保健提供者来说可能很繁琐。语音识别技术已被探索为减轻这一负担的潜在解决方案。然而,缺乏关于姑息治疗语音识别技术的研究。本研究旨在验证使用语音识别和机器学习通过临床对话语音数据自动评估PROMs。

方法

我们在2023年2月至5月招募了100名居家姑息治疗患者,使用综合姑息治疗结局量表(IPOS)进行访谈,并使用现有的语音识别工具转录他们的语音数据。我们计算了识别率,并开发了一个用于症状检测的机器学习模型。模型性能主要使用F1分数、模型阳性预测值的调和平均值和召回率进行评估。

结果

患者的平均年龄为80.6岁(标准差,10.8岁),34.0%为男性。13名患者患有癌症,87名没有。患者语音识别率为55.6%(标准差,12.1%),显著低于总体识别率76.1%(标准差,6.4%)。五种总症状的F1分数范围为0.31至0.46。

结论

尽管需要进一步改进以提高我们模型的性能,但本研究为临床环境中的语音识别和机器学习提供了有价值的见解。我们预计我们的研究结果将减轻医疗保健提供者记录PROMs的负担,增加PROMs的更广泛使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f7/11707305/cc611463d8a8/JJNS-22-e12644-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验