Chen Liyun, Li Linlin, Zhao Hailong, Li Hao, Li Jiahui, Li Chao, Zhou Yang, Yang Luxuan, Liang Jun, Zhang Honglian, Li Juan, Xu Peng, Yuan Cai, Liu Zhenhua, Huang Mingdong, Jiang Longguang
College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China; The National & Local Joint Engineering Research Center on Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, Fujian 350116, China.
Colloids Surf B Biointerfaces. 2025 Apr;248:114493. doi: 10.1016/j.colsurfb.2024.114493. Epub 2025 Jan 3.
Angiogenesis provides essential nutrients and oxygen to tumors during tumorigenesis, facilitating invasion and metastasis. Consequently, inhibiting tumor angiogenesis is an established strategy in anti-cancer therapy. In this study, we engineered a dual-function nanosystem with both antiangiogenic and photodynamic properties. We transformed the hydrophobic photosensitizer zinc phthalocyanine (PS) into a hydrophilic form via protein renaturation, resulting in a novel photosensitizer: Monocyte-Activating Polypeptide-II (EMAP-II:PS@NPs). Characterization through dynamic light scattering (DLS) and UV-vis spectroscopy showed that these nanoparticles exhibited uniform size and stability, and enhanced solubility. We further demonstrated that EMAP-II:PS@NPs effectively target tumor vascular endothelia causing intracellular photodynamic cytotoxicity. Notably, EMAP-II:PS@NPs achieved effective ablation of solid tumors at significantly reduced dosages of drugs compared to conventional therapies, due to their potent apoptotic effects on light-exposed cells. This study highlights the potential of combining anti-angiogenic activity with phototherapy, paving the way for innovative cancer treatment strategies.
血管生成在肿瘤发生过程中为肿瘤提供必需的营养物质和氧气,促进肿瘤侵袭和转移。因此,抑制肿瘤血管生成是抗癌治疗中一种既定的策略。在本研究中,我们构建了一种具有抗血管生成和光动力特性的双功能纳米系统。我们通过蛋白质复性将疏水性光敏剂酞菁锌(PS)转化为亲水性形式,从而得到一种新型光敏剂:单核细胞激活多肽-II(EMAP-II:PS@纳米粒子)。通过动态光散射(DLS)和紫外-可见光谱进行表征,结果表明这些纳米粒子具有均匀的尺寸和稳定性,并且溶解性增强。我们进一步证明,EMAP-II:PS@纳米粒子能够有效靶向肿瘤血管内皮细胞,引起细胞内光动力细胞毒性。值得注意的是,与传统疗法相比,EMAP-II:PS@纳米粒子在显著降低药物剂量的情况下实现了实体瘤的有效消融,这是由于它们对光照细胞具有强大的凋亡作用。本研究突出了将抗血管生成活性与光疗相结合的潜力,为创新的癌症治疗策略铺平了道路。