Suppr超能文献

人工智能辅助数字视频分析揭示了三日赛马匹在比赛期间步态的变化。

AI-assisted digital video analysis reveals changes in gait among three-day event horses during competition.

作者信息

Bucci Madelyn P, Dewberry L Savannah, Staiger Elizabeth A, Allen Kyle, Brooks Samantha A

机构信息

University of Florida Department of Animal Sciences, 2250 Shealy Dr., Gainesville, FL, 32611 United States.

University of Florida Department of Biomedical Engineering, 1275 Center Dr., Gainesville, FL, 32610 United States.

出版信息

J Equine Vet Sci. 2025 Mar;146:105344. doi: 10.1016/j.jevs.2025.105344. Epub 2025 Jan 6.

Abstract

The value and welfare of performance horses is closely tied to locomotor behaviors, but we lack objective and quantitative measures for these characteristics, and qualitative approaches for assessing gait do not provide measures suitable for large-scale biomechanical research studies. Digital video analysis utilizing artificial intelligence-based strategies holds promise to meet the need for an economical, accurate, repeatable and objective technique for field quantification of equine locomotion. Here we describe pilot work using a consumer-level digital video camera to capture high-resolution and high-speed videos of horses moving at the trot during mandatory inspections for international-level eventing competitions. We assessed 194 horses from five different competition venues, recorded at pre-competition (first) and post-cross-country (second) inspections as a model of gait change following exertion. We labeled twenty-six keypoints on each frame with DeepLabCut and processed the resulting tracking data using MatLab to derive quantitative gait parameters. Once trained, the DeepLabCut model labeled the 388 videos in just minutes, a task that would have otherwise taken months of human effort to complete. A Generalized Linear Mixed Model (GLMM) examining seven gait parameters identified significant changes in duty factor, speed, and forelimb swing range following the completion of the cross-country phase (P ≤ 0.05). Despite some limitations, video analysis through artificial intelligence proved capable of quantifying several gait parameters quickly, efficiently, and without the need for specialized equipment, making this tool a promising option for future biomechanical research in the athletic horse.

摘要

竞赛用马的价值和健康状况与运动行为密切相关,但我们缺乏针对这些特征的客观定量测量方法,而且评估步态的定性方法无法提供适用于大规模生物力学研究的测量指标。利用基于人工智能策略的数字视频分析有望满足对一种经济、准确、可重复且客观的技术的需求,用于在野外对马的运动进行量化。在此,我们描述了一项初步工作,使用消费级数字视频摄像机捕捉国际级三项赛强制性检查期间马匹小跑时的高分辨率和高速视频。我们评估了来自五个不同比赛场地的194匹马,在赛前(第一次)和越野赛后(第二次)检查时进行记录,作为运动后步态变化的模型。我们使用DeepLabCut在每一帧上标记26个关键点,并使用MatLab处理所得的跟踪数据以得出定量的步态参数。一旦经过训练,DeepLabCut模型在几分钟内就能标记388个视频,否则这项任务需要数月的人工才能完成。一个广义线性混合模型(GLMM)对七个步态参数进行分析,结果表明在越野赛阶段结束后, duty factor(暂未明确准确中文术语)、速度和前肢摆动范围发生了显著变化(P≤0.05)。尽管存在一些局限性,但通过人工智能进行的视频分析证明能够快速、高效地量化多个步态参数,且无需专门设备,这使得该工具成为未来竞技马生物力学研究的一个有前景的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验