Suppr超能文献

化学引导的 SHAPE 测序(cgSHAPE-seq)揭示了靶向 SARS-CoV-2 5' 非翻译区的 RNA 降解嵌合体的结合位点。

Chemical-guided SHAPE sequencing (cgSHAPE-seq) informs the binding site of RNA-degrading chimeras targeting SARS-CoV-2 5' untranslated region.

作者信息

Tang Zhichao, Hegde Shalakha, Hao Siyuan, Selvaraju Manikandan, Qiu Jianming, Wang Jingxin

机构信息

Department of Medicinal Chemistry, University of Kansas, Lawrence, USA.

Section of Genetic Medicine, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, USA.

出版信息

Nat Commun. 2025 Jan 8;16(1):483. doi: 10.1038/s41467-024-55608-w.

Abstract

One of the hallmarks of RNA viruses is highly structured untranslated regions (UTRs) which are often essential for viral replication, transcription, or translation. In this report, we discovered a series of coumarin derivatives that bind to a four-way RNA helix called SL5 in the 5' UTR of the SARS-CoV-2 RNA genome. To locate the binding site, we developed a sequencing-based method namely cgSHAPE-seq, in which an acylating probe was directed to crosslink with the 2'-OH group of ribose at the binding site to create read-through mutations during reverse transcription. cgSHAPE-seq unambiguously determined a bulged G in SL5 as the primary binding site, which was validated through mutagenesis and in vitro binding experiments. The coumarin derivatives were further used as a warhead in designing RNA-degrading chimeras to reduce viral RNA expression levels. The optimized RNA-degrading chimera C64 inhibited live virus replication in lung epithelial carcinoma cells.

摘要

RNA病毒的一个特征是具有高度结构化的非翻译区(UTR),这些区域通常对病毒复制、转录或翻译至关重要。在本报告中,我们发现了一系列香豆素衍生物,它们与严重急性呼吸综合征冠状病毒2(SARS-CoV-2)RNA基因组5'UTR中一个名为SL5的四链RNA螺旋结合。为了定位结合位点,我们开发了一种基于测序的方法,即cgSHAPE-seq,其中酰化探针被定向与结合位点处核糖的2'-OH基团交联,以在逆转录过程中产生通读突变。cgSHAPE-seq明确确定SL5中一个凸起的G作为主要结合位点,这通过诱变和体外结合实验得到了验证。香豆素衍生物进一步用作设计RNA降解嵌合体的弹头,以降低病毒RNA表达水平。优化后的RNA降解嵌合体C64抑制了肺上皮癌细胞中活病毒的复制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b66/11711761/36ba01283133/41467_2024_55608_Fig1_HTML.jpg

相似文献

4
Requirement of the N-terminal region of nonstructural protein 1 in cis for SARS-CoV-2 defective RNA replication.
J Virol. 2024 Sep 17;98(9):e0090024. doi: 10.1128/jvi.00900-24. Epub 2024 Aug 28.
5
Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs.
Nucleic Acids Res. 2021 Dec 2;49(21):12502-12516. doi: 10.1093/nar/gkab1096.
6
RBM24 inhibits the translation of SARS-CoV-2 polyproteins by targeting the 5'-untranslated region.
Antiviral Res. 2023 Jan;209:105478. doi: 10.1016/j.antiviral.2022.105478. Epub 2022 Dec 1.
9
Structure of the 5' Untranslated Region of Enteroviral Genomic RNA.
J Virol. 2019 Nov 13;93(23). doi: 10.1128/JVI.01288-19. Print 2019 Dec 1.
10
The RNA Architecture of the SARS-CoV-2 3'-Untranslated Region.
Viruses. 2020 Dec 21;12(12):1473. doi: 10.3390/v12121473.

引用本文的文献

1
SHAPE-based chemical probes for studying preQ-RNA interactions in living bacteria.
bioRxiv. 2025 Jul 21:2025.07.21.665968. doi: 10.1101/2025.07.21.665968.
2
Mechanistic studies of small molecule ligands selective to RNA single G bulges.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf559.
3
The Druggable Transcriptome Project: From Chemical Probes to Precision Medicines.
Biochemistry. 2025 Apr 15;64(8):1647-1661. doi: 10.1021/acs.biochem.5c00006. Epub 2025 Mar 25.
5
Mechanistic Studies of Small Molecule Ligands Selective to RNA Single G Bulges.
bioRxiv. 2024 Oct 17:2024.10.14.618236. doi: 10.1101/2024.10.14.618236.
6
Heterobifunctional small molecules to modulate RNA function.
Trends Pharmacol Sci. 2024 May;45(5):449-463. doi: 10.1016/j.tips.2024.03.006. Epub 2024 Apr 18.

本文引用的文献

1
Pervasive transcriptome interactions of protein-targeted drugs.
Nat Chem. 2023 Oct;15(10):1374-1383. doi: 10.1038/s41557-023-01309-8. Epub 2023 Aug 31.
2
Interaction between a fluoroquinolone derivative KG022 and RNAs: Effect of base pairs 3' adjacent to the bulged residues.
Front Mol Biosci. 2023 Mar 14;10:1145528. doi: 10.3389/fmolb.2023.1145528. eCollection 2023.
3
DNA-Encoded Library Screening To Inform Design of a Ribonuclease Targeting Chimera (RiboTAC).
J Am Chem Soc. 2022 Nov 23;144(46):21096-21102. doi: 10.1021/jacs.2c07217. Epub 2022 Nov 7.
4
Targeting RNA structures with small molecules.
Nat Rev Drug Discov. 2022 Oct;21(10):736-762. doi: 10.1038/s41573-022-00521-4. Epub 2022 Aug 8.
5
Inhibition of SARS-CoV-2 by Targeting Conserved Viral RNA Structures and Sequences.
Front Chem. 2021 Dec 23;9:802766. doi: 10.3389/fchem.2021.802766. eCollection 2021.
6
Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures.
Sci Adv. 2021 Nov 26;7(48):eabl6096. doi: 10.1126/sciadv.abl6096.
7
Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design.
Nat Rev Mol Cell Biol. 2022 Jan;23(1):21-39. doi: 10.1038/s41580-021-00432-z. Epub 2021 Nov 25.
8
Interaction between a fluoroquinolone derivative and RNAs with a single bulge.
J Biochem. 2022 Feb 21;171(2):239-244. doi: 10.1093/jb/mvab124.
9
10
A chemical probe based on the PreQ metabolite enables transcriptome-wide mapping of binding sites.
Nat Commun. 2021 Oct 6;12(1):5856. doi: 10.1038/s41467-021-25973-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验