Chen Hsuan-Ai, Okuda Takumi, Lenz Ann-Kathrin, Scheitl Carolin P M, Schindelin Hermann, Höbartner Claudia
Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
Nat Chem Biol. 2025 Jan 8. doi: 10.1038/s41589-024-01808-w.
Ribozymes that catalyze site-specific RNA modification have recently gained increasing interest for their ability to mimic methyltransferase enzymes and for their application to install molecular tags. Recently, we reported SAMURI as a site-specific alkyltransferase ribozyme using S-adenosylmethionine (SAM) or a stabilized analog to transfer a methyl or propargyl group to N of an adenosine. Here, we report the crystal structures of SAMURI in the postcatalytic state. The structures reveal a three-helix junction with the catalytic core folded into four stacked layers, harboring the cofactor and the modified nucleotide. Detailed structure-activity analyses explain the cofactor scope and the structural basis for site selectivity. A structural comparison of SAMURI with SAM riboswitches sheds light on how the synthetic ribozyme overcomes the strategies of natural riboswitches to avoid self-methylation. Our results suggest that SAM and its analogs may serve as substrates for various RNA-catalyzed reactions, for which the corresponding ribozymes remain to be identified.
催化位点特异性RNA修饰的核酶,因其模拟甲基转移酶的能力及其在安装分子标签方面的应用,最近受到了越来越多的关注。最近,我们报道了SAMURI作为一种位点特异性烷基转移酶核酶,它使用S-腺苷甲硫氨酸(SAM)或一种稳定类似物将甲基或炔丙基转移到腺苷的N上。在这里,我们报道了催化后状态下SAMURI的晶体结构。这些结构揭示了一个三螺旋连接体,其催化核心折叠成四个堆叠层,包含辅因子和修饰的核苷酸。详细的结构-活性分析解释了辅因子范围和位点选择性的结构基础。SAMURI与SAM核糖开关的结构比较揭示了合成核酶如何克服天然核糖开关避免自我甲基化的策略。我们的结果表明,SAM及其类似物可能作为各种RNA催化反应的底物,而相应的核酶仍有待确定。