Ling Xiao, Bazyar Soha, Ferris Matthew, Molitoris Jason, Allor Erin, Thomas Hannah, Arons Danielle, Schumaker Lisa, Krc Rebecca, Mendes William Silva, Tran Phuoc T, Sawant Amit, Mehra Ranee, Gaykalova Daria A, Ren Lei
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
Mathematics Department, Auburn University at Montgomery, Alabama, USA.
Sci Rep. 2025 Jan 8;15(1):1279. doi: 10.1038/s41598-025-85498-x.
This study addresses the limited noninvasive tools for Head and Neck Squamous Cell Carcinoma (HNSCC) progression-free survival (PFS) prediction by identifying Computed Tomography (CT)-based biomarkers for predicting prognosis. A retrospective analysis was conducted on data from 203 HNSCC patients. An ensemble feature selection involving correlation analysis, univariate survival analysis, best-subset selection, and the LASSO-Cox algorithm was used to select functional features, which were then used to build final Cox Proportional Hazards models (CPH). Our CPH achieved a 0.69 concordance index in an external indepedent cohort of 77 patients. The model identified five CT-based radiomics features, Gradient ngtdm Contrast, Log3D-FirstorderRootMeanSquared, Log3D-glszm SmallAreaLowGrayLevelEmphasis, Exponential-gldm LargeDependenceHighGrayLevelEmphasis, and Gradient ngtdm Strength as survival biomarkers (p-value < 0.05). These findings contribute to our knowledge of how radiomics can be used to predict the outcome so that treatment plans can be tailored for people with HNSCC to improve their prognosis.
本研究旨在通过识别基于计算机断层扫描(CT)的生物标志物来预测预后,解决头颈部鳞状细胞癌(HNSCC)无进展生存期(PFS)预测方面非侵入性工具有限的问题。对203例HNSCC患者的数据进行了回顾性分析。采用了一种综合特征选择方法,包括相关性分析、单变量生存分析、最佳子集选择和LASSO-Cox算法来选择功能特征,然后用这些特征构建最终的Cox比例风险模型(CPH)。我们的CPH在一个由77例患者组成的外部独立队列中实现了0.69的一致性指数。该模型识别出五个基于CT的放射组学特征,即梯度邻域灰度差矩阵对比度(Gradient ngtdm Contrast)、对数三维一阶均方根(Log3D-FirstorderRootMeanSquared)、对数三维灰度共生矩阵小面积低灰度级强调(Log3D-glszm SmallAreaLowGrayLevelEmphasis)、指数灰度依赖矩阵大依赖性高灰度级强调(Exponential-gldm LargeDependenceHighGrayLevelEmphasis)和梯度邻域灰度差矩阵强度(Gradient ngtdm Strength)作为生存生物标志物(p值<0.05)。这些发现有助于我们了解放射组学如何用于预测结果,从而为HNSCC患者量身定制治疗方案以改善其预后。