Suppr超能文献

冠状动脉疾病严重程度的无创预测:心电图表现及危险因素与SYNTAX评分和Gensini评分的比较分析

Noninvasive prediction of coronary artery disease severity: Comparative analysis of electrocardiographic findings and risk factors with SYNTAX and Gensini score.

作者信息

Mirjalili Farzaneh-Sadat, Baghiani Tahere, Badkoubeh Faezeh, Andishmand Abbas, Sarebanhassanabadi Mohammadtaghi, Mohammadi Hamidreza, Salehi-Abargouei Amin, Motallaei Maryam, Seyedhosseini Seyed Mostafa

机构信息

Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

School of Medicine, Arak University of Medical Sciences, Arak, Iran.

出版信息

Sci Prog. 2025 Jan-Mar;108(1):368504241309454. doi: 10.1177/00368504241309454.

Abstract

OBJECTIVE

Coronary artery disease (CAD) remains a significant global health burden, characterized by the narrowing or blockage of coronary arteries. Treatment decisions are often guided by angiography-based scoring systems, such as the Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) and Gensini scores, although these require invasive procedures. This study explores the potential of electrocardiography (ECG) as a noninvasive diagnostic tool for predicting CAD severity, alongside traditional risk factors.

METHODS

This retrospective cross-sectional study was conducted on 348 CAD patients who underwent coronary angiography. Demographic data, ECG findings, SYNTAX, and Gensini scores were collected. The association between ECG findings and demographic information with the severity of coronary artery stenosis, as assessed by SYNTAX and Gensini scores, was investigated using SPSS software, version 23.

RESULTS

Significant associations were observed between CAD severity and risk factors such as male gender, diabetes mellitus (DM), and smoking. Additionally, certain ECG indicators, including Q waves and ST depression (STD), showed significant correlations with CAD severity, particularly according to the Gensini score.

CONCLUSION

This study underscores the utility of ECG and clinical factors in identifying severe CAD, offering cost-effective diagnostic alternatives to angiography. Integrating various parameters into a single score is crucial in clinical practice, providing a stronger diagnostic and prognostic tool without increasing costs. Further comprehensive studies are warranted to refine risk prediction models and improve CAD management strategies.

摘要

目的

冠状动脉疾病(CAD)仍然是一项重大的全球健康负担,其特征为冠状动脉狭窄或堵塞。治疗决策通常由基于血管造影的评分系统指导,例如紫杉醇药物洗脱支架与心脏外科手术协同研究(SYNTAX)评分和Gensini评分,尽管这些需要侵入性操作。本研究探讨心电图(ECG)作为一种非侵入性诊断工具与传统风险因素一起预测CAD严重程度的潜力。

方法

对348例接受冠状动脉造影的CAD患者进行了这项回顾性横断面研究。收集了人口统计学数据、ECG结果、SYNTAX评分和Gensini评分。使用SPSS 23版软件研究ECG结果和人口统计学信息与通过SYNTAX评分和Gensini评分评估的冠状动脉狭窄严重程度之间的关联。

结果

观察到CAD严重程度与男性、糖尿病(DM)和吸烟等风险因素之间存在显著关联。此外,某些ECG指标,包括Q波和ST段压低(STD),与CAD严重程度显示出显著相关性,特别是根据Gensini评分。

结论

本研究强调了ECG和临床因素在识别严重CAD方面的效用,为血管造影提供了具有成本效益的诊断替代方法。在临床实践中将各种参数整合为单一评分至关重要,可提供更强有力的诊断和预后工具而不增加成本。有必要进行进一步的全面研究以完善风险预测模型并改进CAD管理策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2655/11713963/f6942483007f/10.1177_00368504241309454-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验