Suppr超能文献

导电聚合物中掺杂的空间控制可实现互补、贴合、可植入的内部离子门控有机电化学晶体管。

Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors.

作者信息

Wisniewski Duncan J, Ma Liang, Rauhala Onni J, Cea Claudia, Zhao Zifang, Ranschaert Alexander, Gelinas Jennifer N, Khodagholy Dion

机构信息

Department of Electrical Engineering, University of California, Irvine, CA, USA.

Department of Electrical Engineering, Columbia University, New York, NY, USA.

出版信息

Nat Commun. 2025 Jan 9;16(1):517. doi: 10.1038/s41467-024-55284-w.

Abstract

Complementary transistors are critical for circuits with compatible input/output signal dynamic range and polarity. Organic electronics offer biocompatibility and conformability; however, generation of complementary organic transistors requires introduction of separate materials with inadequate stability and potential for tissue toxicity, limiting their use in biomedical applications. Here, we discovered that introduction of source/drain contact asymmetry enables spatial control of de/doping and creation of single-material complementary organic transistors from a variety of conducting polymers of both carrier types. When integrated with the vertical channel design and internal ion reservoirs of internal ion-gated organic electrochemical transistors, we produced matched complementary IGTs (cIGTs) that formed high-performance conformable amplifiers with 200 V/V uniform gain and 2 MHz bandwidth. These amplifiers showed long-term in vivo stability, and their miniaturized biocompatible design allowed implantation in developing rodents to monitor network maturation. cIGTs expand the use of organic electronics in standard circuit designs and enhance their biomedical potential.

摘要

互补晶体管对于具有兼容输入/输出信号动态范围和极性的电路至关重要。有机电子器件具有生物相容性和顺应性;然而,生成互补有机晶体管需要引入稳定性不足且具有组织毒性潜力的单独材料,这限制了它们在生物医学应用中的使用。在此,我们发现引入源极/漏极接触不对称性能够实现去掺杂/掺杂的空间控制,并从两种载流子类型的多种导电聚合物中制造出单材料互补有机晶体管。当与垂直沟道设计和内部离子门控有机电化学晶体管的内部离子库集成时,我们制造出了匹配的互补离子门控晶体管(cIGT),这些晶体管形成了具有200 V/V均匀增益和2 MHz带宽的高性能顺应性放大器。这些放大器在体内表现出长期稳定性,其小型化的生物相容性设计允许植入发育中的啮齿动物体内以监测神经网络成熟。cIGT扩展了有机电子器件在标准电路设计中的应用,并增强了它们的生物医学潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0a3/11717955/06750caea3a0/41467_2024_55284_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验