Meng Wei, Chen Xiaotong, Chen Yanyan, Li Mingshun, Zhang Lianying, Luo Qiujie, Wei Chenlu, Huang Guoqin, Zhao Pei, Sun Bin, Chen Ming, Zhang Qun, Chen Jinxiang
Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510663, China.
Small. 2025 Feb;21(7):e2411189. doi: 10.1002/smll.202411189. Epub 2025 Jan 10.
Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed. The system is capable of acting as a nitric oxide (NO) reactor utilizing synergistic therapy that harnesses NIR-II light-triggered photothermal effects and controlled release of NO gas for synergistic treatment to eradicate biofilm infections at different depths. The AuPd nanoshells exhibits superoxide dismutase (SOD)-, glucose oxidase (GOx)-, and catalase (CAT)-like activities, enabling self-cascade process for scavenging both reactive oxygen species (ROS) and glucose. This activity reshapes the DUs microenvironment, switches on the endogenous antioxidant Nrf2/HO-1 pathway and inhibits the NF-κB pathway, promotes macrophage polarization toward the anti-inflammatory M2 phenotype, and reduces oxidative stress, resulting in efficient immunomodulation. In vitro/in vivo results demonstrate that the UAPsBP@Gel can multifacetedly enhance the epithelial rejuvenation process through wound hemostasis, pro-cellular migration and vascularization. These results highlight that a programmed therapeutic based on UBAPsP@Gel tailored to the different stages of infected DUs can meet complex clinical needs.
糖尿病溃疡(DUs)的特征在于具有高氧化应激、高血糖水平和顽固性细菌感染的微环境。这种微环境伴随着内源性抗氧化系统的长期抑制,这使得其临床管理极具挑战性。为了解决这个问题,开发了一种可注射/可注射水凝胶系统UiO/AuPd/BNN6/PEG@Gel(UAPsBP@Gel)的杂交新型金钯(AuPd)纳米壳。该系统能够作为一氧化氮(NO)反应器,利用协同疗法,利用近红外二区光触发的光热效应和NO气体的控释进行协同治疗,以根除不同深度的生物膜感染。AuPd纳米壳表现出超氧化物歧化酶(SOD)、葡萄糖氧化酶(GOx)和过氧化氢酶(CAT)样活性,能够进行自级联过程以清除活性氧(ROS)和葡萄糖。这种活性重塑了DUs微环境,开启内源性抗氧化剂Nrf2/HO-1途径并抑制NF-κB途径,促进巨噬细胞向抗炎M2表型极化,并降低氧化应激,从而实现有效的免疫调节。体外/体内结果表明,UAPsBP@Gel可以通过伤口止血、促进细胞迁移和血管生成多方面增强上皮再生过程。这些结果突出表明,基于UBAPsP@Gel针对感染性DUs不同阶段量身定制的程序化治疗可以满足复杂的临床需求。