Cordani Marco, Fernández-Lucas Jesús, Khosravi Arezoo, Zare Ehsan Nazarzadeh, Makvandi Pooyan, Zarrabi Ali, Iravani Siavash
Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain; Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 #55 - 66, 080002 Barranquilla, Colombia.
Int J Biol Macromol. 2025 Mar;297:139704. doi: 10.1016/j.ijbiomac.2025.139704. Epub 2025 Jan 8.
Carbon-based nanozymes (CNs) have emerged as a significant innovation in targeted cancer therapy, demonstrating great potential for advancing cancer diagnosis and treatment. With exceptional catalytic properties, remarkable biocompatibility, and the ability to precisely target cancer cells, CNs provide a promising avenue for the development of novel oncological therapies. By functionalizing their surfaces with targeting ligands, such as antibodies or peptides, CNs can specifically recognize and bind to cancer cells. This targeted approach ensures that therapeutic agents are delivered directly to the tumor site, minimizing off-target effects, and reducing systemic toxicity. Additionally, the enzyme-like activities of CNs, when combined with conventional therapies such as chemotherapeutics, photothermal therapy, and photodynamic therapy, or other modalities can enhance therapeutic outcomes. Integrating CNs into clinical practice could significantly improve therapeutic efficacy, reduce probable side effects, enhance patient outcomes, and drive a shift towards more personalized cancer care. Besides, CNs can also be employed in biosensors and diagnostic nanomaterials, enabling rapid, selective, and highly accurate detection of specific biomarkers. Their versatile functionalities open new avenues for refining imaging techniques, ultimately contributing to early diagnosis and better clinical decision-making. This review consolidates recent studies exploring CNs in cancer targeting, highlighting both their diagnostic and therapeutic potential in oncology.
碳基纳米酶(CNs)已成为靶向癌症治疗领域的一项重大创新,在推进癌症诊断和治疗方面展现出巨大潜力。凭借卓越的催化性能、出色的生物相容性以及精确靶向癌细胞的能力,碳基纳米酶为新型肿瘤治疗方法的开发提供了一条充满希望的途径。通过用靶向配体(如抗体或肽)对其表面进行功能化修饰,碳基纳米酶能够特异性识别并结合癌细胞。这种靶向方法确保治疗剂直接递送至肿瘤部位,将脱靶效应降至最低,并降低全身毒性。此外,碳基纳米酶的类酶活性与化疗、光热疗法、光动力疗法等传统疗法或其他治疗方式相结合时,可提高治疗效果。将碳基纳米酶整合到临床实践中可显著提高治疗效果、减少可能的副作用、改善患者预后,并推动向更个性化癌症护理的转变。此外,碳基纳米酶还可用于生物传感器和诊断纳米材料,实现对特定生物标志物的快速、选择性和高度准确检测。它们的多功能特性为改进成像技术开辟了新途径,最终有助于早期诊断和更好的临床决策。本综述汇总了近期探索碳基纳米酶用于癌症靶向治疗的研究,突出了它们在肿瘤学中的诊断和治疗潜力。
Int J Biol Macromol. 2025-3
J Nanobiotechnology. 2025-2-20
Int J Biol Macromol. 2025-5
Int J Biol Macromol. 2024-4
Nanoscale. 2024-4-25
Biosens Bioelectron. 2025-7-1
ACS Appl Mater Interfaces. 2025-2-26
Nanomicro Lett. 2025-7-7
Nanomedicine (Lond). 2025-6-18