Pawlak Rémy, Anindya Khalid N, Chahib Outhmane, Liu Jung-Ching, Hiret Paul, Marot Laurent, Luzet Vincent, Palmino Frank, Chérioux Frédéric, Rochefort Alain, Meyer Ernst
Department of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland.
Engineering Physics Department, Polytechnique Montréal, Montréal (Québec) H3C 3A7, Canada.
ACS Nano. 2025 Feb 4;19(4):4768-4777. doi: 10.1021/acsnano.4c15519. Epub 2025 Jan 10.
Flat bands in Kagome graphene might host strong electron correlations and frustrated magnetism upon electronic doping. However, the porous nature of Kagome graphene opens a semiconducting gap due to quantum confinement, preventing its fine-tuning by electrostatic gates. Here we induce zero-energy states into a semiconducting Kagome graphene by inserting π-radicals at selected locations. We utilize the on-surface reaction of tribromotrioxoazatriangulene molecules to synthesize carbonyl-functionalized Kagome graphene on Au(111), thereafter modified by exposure to atomic hydrogen. Atomic force microscopy and tunneling spectroscopy unveil the stepwise chemical transformation of the carbonyl groups into radicals, which creates local magnetic defects of spin state = 1/2 and zero-energy states as confirmed by density functional theory. The ability to imprint local magnetic moments opens up prospects to study the interplay between topology, magnetism, and electron correlation in Kagome graphene.
在电子掺杂时, Kagome 石墨烯中的平带可能会呈现出强电子关联和受挫磁性。然而,Kagome 石墨烯的多孔性质由于量子限制而打开了一个半导体能隙,从而阻止了通过静电栅极对其进行微调。在这里,我们通过在选定位置插入 π 自由基,将零能态引入到半导体 Kagome 石墨烯中。我们利用三溴三氧氮杂三苯分子的表面反应,在 Au(111) 上合成了羰基官能化的 Kagome 石墨烯,随后通过暴露于原子氢进行修饰。原子力显微镜和隧道光谱揭示了羰基逐步化学转化为自由基的过程,这产生了自旋态为 1/2 的局部磁缺陷和零能态,密度泛函理论证实了这一点。引入局部磁矩的能力为研究 Kagome 石墨烯中拓扑、磁性和电子关联之间的相互作用开辟了前景。