Huang Haomin, Wang Chen, Chang Shenghai, Cui Tao, Xu Yongchang, Huang Man, Zhang Huimin, Zhou Chun, Zhang Xing, Feng Youjun
Key Laboratory of Multiple Organ Failure (Ministry of Education), Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Nat Struct Mol Biol. 2025 May;32(5):802-817. doi: 10.1038/s41594-024-01464-7. Epub 2025 Jan 10.
Fatty acids (FAs) are essential building blocks for all the domains of life, of which bacterial de novo synthesis, called type II FA synthesis (FAS II), is energetically expensive. The recycling of exogenous FAs (eFAs) partially relieves the FAS II demand and, therefore, compromises the efficacy of FAS II-directed antimicrobials. The versatile acyl-acyl carrier protein (ACP) synthetase, AasS, enables bacterial channeling of diverse eFA nutrients through holo-ACP, an activated form of ACP. However, the molecular mechanism for AasS catalysis is not fully understood. Here we report a series of cryo-electron microscopy structures of AasS from the bioluminescent bacterium Vibrio harveyi to provide insights into the catalytic cycle. AasS forms a ring-shaped hexamer, with each protomer folding into two distinct domains. Biochemical and structural analysis suggests that AasS accommodates distinct eFA substrates and the conserved W230 residue has a gating role. Adenosine triphosphate and Mg binding converts the AasS hexamer to a tetramer, which is likely needed for the acyl adenylate intermediate formation. Afterward, AasS reverts to the hexamer conformation in adaption to acyl-ACP production. The complete landscape for eFA scavenging lays a foundation for exploiting the versatility of AasS in biopharmaceuticals.
脂肪酸(FAs)是所有生命领域的基本组成部分,其中细菌的从头合成,即II型脂肪酸合成(FAS II),在能量上成本高昂。外源性脂肪酸(eFAs)的循环利用部分缓解了对FAS II的需求,因此会削弱针对FAS II的抗菌药物的疗效。多功能酰基-酰基载体蛋白(ACP)合成酶AasS能够使细菌通过全ACP(一种活化形式的ACP)引导多种eFA营养物质。然而,AasS催化的分子机制尚未完全了解。在这里,我们报告了来自发光细菌哈维弧菌的一系列AasS的冷冻电子显微镜结构,以深入了解其催化循环。AasS形成环状六聚体,每个亚基折叠成两个不同的结构域。生化和结构分析表明,AasS可容纳不同的eFA底物,保守的W230残基具有门控作用。三磷酸腺苷和镁的结合将AasS六聚体转变为四聚体,这可能是酰基腺苷酸中间体形成所必需的。之后,AasS恢复为六聚体构象以适应酰基-ACP的产生。eFA清除的完整过程为利用AasS在生物制药中的多功能性奠定了基础。