文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Comparative Metagenomic Analysis of the Gut Microbiota of Captive Pangolins: A Case Study of Two Species.

作者信息

Dai Zhengyu, Xie Bowen, Xie Chungang, Xiang Jinsuo, Wang Xinmei, Li Jing, Zheng Rongquan, Wang Yanni

机构信息

College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.

Wildlife Protection and Management Station, Jinhua Municipal Bureau of Planning and Natural Resources, Jinhua 321052, China.

出版信息

Animals (Basel). 2024 Dec 30;15(1):57. doi: 10.3390/ani15010057.


DOI:10.3390/ani15010057
PMID:39795000
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11718824/
Abstract

Pangolins, one of the most trafficked mammals, face significant health challenges in captivity, including digestive disorders and immune dysfunctions. These issues are closely linked to alterations in their gut microbiota, which play vital roles in the host metabolism, immunity, and overall health. This study investigated the differences in the gut microbiota composition and function between two pangolin species, Chinese pangolins () and Malayan pangolins (), under identical captive conditions to better understand their ecological adaptability and health implications. Using metagenomic sequencing, fecal samples from eight adult captive pangolins were analyzed, including four male Malayan pangolins and three male and one female Chinese pangolins. Comparative analyses of the alpha and beta diversities, microbial community structure, and functional profiles were performed. Both species harbored gut microbiota dominated by Firmicutes, Bacteroidetes, and Proteobacteria. However, the Chinese pangolins exhibited higher microbial diversity (Shannon index, = 0.042; Simpson index, = 0.037) and lower relative abundance of Proteobacteria compared with the Malayan pangolins. A functional analysis revealed significant differences in the metabolic pathways, where the Chinese pangolins demonstrated a higher potential for fiber degradation, whereas the Malayan pangolins exhibited elevated levels of antibiotic resistance genes and pathogenic taxa, such as . These findings suggest that captivity duration and environmental stress likely contribute to the observed differences, with the Malayan pangolins experiencing greater dysbiosis due to longer captivity periods. This study provides valuable insights into the role of gut microbiota in pangolin health and offers a foundation for improving conservation strategies and captive care protocols.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/b5c3bc92ee9b/animals-15-00057-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/14fafb5ee242/animals-15-00057-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/c41ac2cbda36/animals-15-00057-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/72c52d1c12e2/animals-15-00057-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/54fd8742830f/animals-15-00057-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/c49cc6c11f88/animals-15-00057-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/5c5bf456803b/animals-15-00057-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/e08967accae5/animals-15-00057-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/f6ccd46a4d43/animals-15-00057-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/21af161c9817/animals-15-00057-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/b645f7963f61/animals-15-00057-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/b5c3bc92ee9b/animals-15-00057-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/14fafb5ee242/animals-15-00057-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/c41ac2cbda36/animals-15-00057-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/72c52d1c12e2/animals-15-00057-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/54fd8742830f/animals-15-00057-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/c49cc6c11f88/animals-15-00057-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/5c5bf456803b/animals-15-00057-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/e08967accae5/animals-15-00057-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/f6ccd46a4d43/animals-15-00057-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/21af161c9817/animals-15-00057-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/b645f7963f61/animals-15-00057-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0918/11718824/b5c3bc92ee9b/animals-15-00057-g006.jpg

相似文献

[1]
Comparative Metagenomic Analysis of the Gut Microbiota of Captive Pangolins: A Case Study of Two Species.

Animals (Basel). 2024-12-30

[2]
Differences in gut microbes in captive pangolins and the effects of captive breeding.

Front Microbiol. 2022-12-6

[3]
Effects of Chronic Stress on the Fecal Microbiome of Malayan Pangolins (Manis javanica) Rescued from the Illegal Wildlife Trade.

Curr Microbiol. 2021-3

[4]
[Allometry of scales in Chinese pangolins (Manis pentadactyla) and Malayan pangolins (Manis javanica) and application in judicial expertise].

Dongwuxue Yanjiu. 2012-6

[5]
Successful captive breeding of a Malayan pangolin population to the third filial generation.

Commun Biol. 2021-10-21

[6]
Specific mating behavior of Malayan pangolin (Manis javanica) in captivity.

Sci Rep. 2023-5-26

[7]
Comparative study of gut microbiota from captive and confiscated-rescued wild pangolins.

J Genet Genomics. 2021-9-20

[8]
Phylogenetic relationship and molecular dating of Indian pangolin (Manis crassicaudata) with other extant pangolin species based on complete cytochrome b mitochondrial gene.

Mitochondrial DNA A DNA Mapp Seq Anal. 2018-12

[9]
Detection of a novel strain in Java ticks () and the hosts Malayan pangolin () and Chinese pangolin ().

Front Microbiol. 2022-9-2

[10]
The gut microbiome of the Sunda pangolin () reveals its adaptation to specialized myrmecophagy.

PeerJ. 2021-6-2

引用本文的文献

[1]
Comparative analysis of gut microbiota and metabolome in captive Chinese and Malayan pangolins.

Front Microbiol. 2025-6-18

[2]
FACdb: a comprehensive resource for genes, gut microbiota, and metabolites in farm animals.

Front Microbiol. 2025-3-21

本文引用的文献

[1]
Alteration of the gut microbial composition of critically endangered Malayan tigers (Panthera tigris jacksoni) in captivity during enrichment phase.

Mol Biol Rep. 2024-6-14

[2]
Red pandas with different diets and environments exhibit different gut microbial functional composition and capacity.

Integr Zool. 2024-7

[3]
Evolution and conservation genetics of pangolins.

Integr Zool. 2024-5

[4]
Hologenomic insights into mammalian adaptations to myrmecophagy.

Natl Sci Rev. 2022-8-24

[5]
Combining methods for non-invasive fecal DNA enables whole genome and metagenomic analyses in wildlife biology.

Front Genet. 2023-1-12

[6]
To Save Pangolins: A Nutritional Perspective.

Animals (Basel). 2022-11-14

[7]
Weaning period and growth patterns of captive Sunda pangolin (Manis javanica) cubs.

PLoS One. 2022

[8]
The gut microbiome influences host diet selection behavior.

Proc Natl Acad Sci U S A. 2022-4-26

[9]
Successful captive breeding of a Malayan pangolin population to the third filial generation.

Commun Biol. 2021-10-21

[10]
Comparative study of gut microbiota from captive and confiscated-rescued wild pangolins.

J Genet Genomics. 2021-9-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索