Van Nerom Sofie, Buyse Kobe, Van Immerseel Filip, Robbens Johan, Delezie Evelyne
Animal Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Merelbeke-Melle, Belgium.
Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium.
Animals (Basel). 2024 Dec 30;15(1):65. doi: 10.3390/ani15010065.
This study evaluated the feed digestibility of diets including autotrophic in 252 male broilers (Ross 308), comparing unprocessed biomass (trial 1) and pulsed electric field (PEF) processed biomass (trial 2) at inclusion levels up to 20%. In trial 2, performance and meat color were also evaluated. Each trial included seven treatments (0%, 1%, 2%, 5%, 10%, 15%, and 20% (%/ on dry matter (DM)) ) with six replicates (three birds per replicate) per treatment. Data were analyzed using linear, quadratic, and broken-line models. Control feeds without microalgae inclusion achieved a crude protein digestibility of 82.04 ± 1.42% (trial 1) and 81.63 ± 1.90% (trial 2), while feed with 20% non-processed microalgae inclusion only had a protein digestibility of 66.96 ± 1.16% (trial 1) and feed with PEF processed microalgae at 20% had a protein digestibility of 72.75 ± 0.34% (trial 2). In general, increasing inclusion levels of impaired nutrient digestibility, significantly reducing crude protein, crude fat, gross energy, and crude ash digestibility ( < 0.001). Broken-line models identified critical inclusion thresholds beyond which digestibility declined significantly, i.e., at 10% for crude protein, 12.53% for crude fat, and 9.26% for gross energy in unprocessed microalgae feeds (trial 1). For PEF-processed microalgae, only a broken line fit was obtained for gross energy, with a breakpoint at 5% (trial 2). Furthermore, a significant linear decrease in body weight (BW) ( < 0.001), average daily gain (ADG) ( < 0.001), average daily feed intake (ADFI) ( = 0.006), and relative and absolute breast filet weight was observed as microalgae inclusion level increased (trial 2). Color parameters also changed significantly with increasing microalgae inclusion level: L* showed a significant linear decrease ( = 0.029), b* and a* showed a significant linear increase ( < 0.001) (trial 2). This research advances the exploration of sustainable protein alternatives, highlighting the potential of microalgae in broiler feed and the benefits of processing methods such as PEF to enhance nutrient utilization.
本研究评估了252只雄性肉鸡(罗斯308)日粮中包含自养生物的饲料消化率,比较了未加工生物量(试验1)和脉冲电场(PEF)处理的生物量(试验2),添加水平最高达20%。在试验2中,还评估了生产性能和肉色。每个试验包括七种处理(0%、1%、2%、5%、10%、15%和20%(占干物质(DM)的比例)),每个处理有六个重复(每个重复三只鸡)。数据采用线性、二次和折线模型进行分析。不添加微藻的对照饲料粗蛋白消化率分别为82.04±1.42%(试验1)和81.63±1.90%(试验2),而添加20%未加工微藻的饲料蛋白消化率仅为66.96±1.16%(试验1),添加20%PEF处理微藻的饲料蛋白消化率为72.75±0.34%(试验2)。总体而言,添加水平的增加会损害营养物质的消化率,显著降低粗蛋白、粗脂肪、总能和粗灰分的消化率(P<0.001)。折线模型确定了关键添加阈值,超过该阈值消化率会显著下降,即未加工微藻饲料中粗蛋白为10%、粗脂肪为12.53%、总能为9.26%(试验1)。对于PEF处理的微藻,仅总能获得了折线拟合,转折点为5%(试验2)。此外,随着微藻添加水平的增加,观察到体重(BW)(P<0.001)、平均日增重(ADG)(P<0.001)、平均日采食量(ADFI)(P=0.006)以及相对和绝对胸肉重量显著线性下降(试验2)。随着微藻添加水平的增加,颜色参数也发生了显著变化:L呈显著线性下降(P=0.029),b和a*呈显著线性增加(P<0.001)(试验2)。本研究推进了对可持续蛋白质替代品的探索,突出了微藻在肉鸡饲料中的潜力以及PEF等加工方法对提高营养物质利用率的益处。