Yun Minyoung, Tannous Mikhael, Ghnatios Chady, Fonn Eivind, Kvamsdal Trond, Chinesta Francisco
PIMM Research Laboratory, UMR 8006 CNRS-ENSAM-CNAM, Arts et Metiers Institute of Technology, 151 Boulevard de l'Hôpital, 75013 Paris, France.
Mechanical Engineering Department, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA.
Sensors (Basel). 2024 Dec 27;25(1):91. doi: 10.3390/s25010091.
This work introduces a novel methodology for identifying critical sensor locations and detecting defects in structural components. Initially, a hybrid method is proposed to determine optimal sensor placements by integrating results from both the discrete empirical interpolation method (DEIM) and the random permutation features importance technique (PI). Subsequently, the identified sensors are utilized in a novel defect detection approach, leveraging a semi-intrusive reduced order modeling and genetic search algorithm for fast and reliable defect detection. The proposed algorithm has successfully located defects with low error, especially when using hybrid sensors, which combine the most critical sensors identified through both PI and DEIM. This hybrid method identifies defects with the lowest errors compared to using either the PI or DEIM methods alone.
这项工作介绍了一种用于识别关键传感器位置和检测结构部件缺陷的新方法。首先,提出了一种混合方法,通过整合离散经验插值法(DEIM)和随机排列特征重要性技术(PI)的结果来确定最佳传感器布置。随后,将识别出的传感器用于一种新型缺陷检测方法中,利用半侵入式降阶建模和遗传搜索算法进行快速可靠的缺陷检测。所提出的算法已成功地以低误差定位缺陷,特别是在使用混合传感器时,这种混合传感器结合了通过PI和DEIM识别出的最关键传感器。与单独使用PI或DEIM方法相比,这种混合方法识别缺陷时的误差最低。