Wang Rui, Li Yingjie, Yan Siyu, Zhang Zekai, Lian Cheng, Tian He, Li Hongxiang
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
J Am Chem Soc. 2025 Jan 22;147(3):2841-2848. doi: 10.1021/jacs.4c16530. Epub 2025 Jan 11.
Understanding and effectively controlling molecular conformational changes are essential for developing responsive and dynamic molecular systems. Here, we report that an oriented external electric field (OEEF) is an effective catalyst for the cis-trans isomerization of stiff-stilbene, a key component of overcrowded alkene-based rotary motors. This reversible isomerization occurs under ambient conditions, is free from side reactions, and has been verified using ultraperformance liquid chromatography and UV-vis absorption spectroscopy. Low electric field promotes cis-to-trans conversion, and high electric field enables the reverse trans-to-cis process, demonstrating the precise reaction control through electric field manipulation. Density functional theory calculations reveal the mechanism of the electric-field-catalyzed cis-trans carbon-carbon double bond isomerization. Our findings provide a novel perspective on constructing OEEF-catalyzed, reversible molecular systems and pave the way for fully electrically driven artificial molecular machines.
理解并有效控制分子构象变化对于开发响应性和动态分子系统至关重要。在此,我们报告了定向外部电场(OEEF)是刚性二苯乙烯顺反异构化的有效催化剂,刚性二苯乙烯是过度拥挤的基于烯烃的旋转马达的关键组成部分。这种可逆异构化在环境条件下发生,无副反应,并已通过超高效液相色谱和紫外可见吸收光谱进行了验证。低电场促进顺式到反式的转化,高电场则使反式到顺式的逆过程得以实现,证明了通过电场操纵实现精确的反应控制。密度泛函理论计算揭示了电场催化顺反碳 - 碳双键异构化的机理。我们的研究结果为构建OEEF催化的可逆分子系统提供了新的视角,并为全电驱动的人工分子机器铺平了道路。