Suppr超能文献

利用改进的带有归一化互相关的Levenberg-Marquardt优化算法提高透射式乳腺图像的配准精度。

Enhance registration precision of transmission breast images utilizing improved Levenberg-Marquardt optimization algorithm with normalized cross-correlation.

作者信息

Li Gang, Su Win Nan Su, Fan Meiling, Li Jiatong, Lin Ling

机构信息

Medical School of Tianjin University, Tianjin, 300072, China.

State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.

出版信息

Comput Biol Med. 2025 Mar;186:109654. doi: 10.1016/j.compbiomed.2025.109654. Epub 2025 Jan 10.

Abstract

Transmission imaging may become a possible advance for breast cancer screening with non-invasive, cost-effective, and radiation-free approaches for early detection. Frame accumulation can successfully eliminate the issue of low SNR, low grayscale and poor quality in transmission image. However, frame accumulation accuracy can be diminished because of inherent human body instability during image acquisition and the light absorption characteristics of breast tissue, resulting in distorted and misplaced image sequences. Therefore, improved Levenberg-Marquardt optimization algorithm with normalized cross-correlation is used as an innovative approach to rectify image sequences before frame accumulation processing. Two separate sets of data, showing breast images with and without markers, were collected using a halogen bulb and a mobile phone camera to validate the suggested method. The approach includes coarse registration utilizing normalized cross-correlation for initial value estimation, followed by fine registration using Levenberg-Marquardt algorithm. The results demonstrate a notable improvement in both accuracy of registration and frame accumulation quality. Specifically, the registration speed showed a remarkable increase, being 8.7 times faster, especially prominent in images that included markers. These images displayed normalized cross-correlation values reaching up to 0.99. The research emphasizes the future potential of the suggested method in overcoming the image quality challenges associated with breast transmission imaging, providing a significant milestone toward more accurate and efficient early breast cancer screening methods. Moreover, transmission imaging systems for the breast have been developed to verify the safety and effectiveness of the implemented technology.

摘要

透射成像可能成为乳腺癌筛查的一项潜在进展,它采用非侵入性、经济高效且无辐射的方法进行早期检测。帧累积可以成功消除透射图像中信噪比低、灰度低和质量差的问题。然而,由于图像采集过程中人体固有的不稳定性以及乳腺组织的光吸收特性,帧累积的准确性可能会降低,从而导致图像序列失真和错位。因此,采用改进的带有归一化互相关的Levenberg-Marquardt优化算法作为一种创新方法,在帧累积处理之前对图像序列进行校正。使用卤素灯泡和手机摄像头收集了两组单独的数据,分别显示有标记和无标记的乳腺图像,以验证所提出的方法。该方法包括利用归一化互相关进行粗配准以估计初始值,然后使用Levenberg-Marquardt算法进行精配准。结果表明,配准精度和帧累积质量都有显著提高。具体而言,配准速度显著提高,快了8.7倍,在包含标记的图像中尤为突出。这些图像显示归一化互相关值高达0.99。该研究强调了所提出方法在克服与乳腺透射成像相关的图像质量挑战方面的未来潜力,为更准确、高效的早期乳腺癌筛查方法提供了一个重要的里程碑。此外,已经开发了用于乳腺的透射成像系统,以验证所实施技术的安全性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验