Sakhabutdinov Ildar T, Chastukhina Inna B, Ryazanov Egor A, Ponomarev Sergey N, Gogoleva Olga A, Balkin Alexander S, Korzun Viktor N, Ponomareva Mira L, Gorshkov Vladimir Y
Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia.
Novosibirsk State University, Novosibirsk, 630090, Russia.
Environ Microbiome. 2025 Jan 11;20(1):3. doi: 10.1186/s40793-025-00665-x.
Snow mold caused by different psychrophilic phytopathogenic fungi is a devastating disease of winter cereals. The variability of the snow mold pathocomplex (the quantitative composition of snow mold fungi) has not been evaluated across different crops or different agrocenoses, and no microbial taxa have been predicted at the whole-microbiome level as potential effective snow mold control agents. Our study aimed to assess the variability of the snow mold pathocomplex in different winter cereal crops (rye, wheat, and triticale) in different agrocenoses following the peak disease progression and to arrange a hierarchical list of microbial taxa predicted to be the main candidates to prevent or, conversely, stimulate the development of snow mold pathogens.
The variability of microbiomes between different crops within a particular agrocenosis was largely determined by fungal communities, whereas the variability of microbiomes of a particular crop in different agrocenoses was largely determined by bacterial communities. The snow mold pathocomplex was the most "constant" in rye, with the lowest level of between-replicate variability and between-agrocenoses variability and (similar to the triticale snow mold pathocomplex) strong dominance of Microdochium over other snow mold fungi. The wheat snow mold pathocomplex was represented by different snow mold fungi, including poorly investigated Phoma sclerotioides. To predict snow mold-control microorganisms, a conveyor of statistical methods was formed and applied; this conveyor enables considering not only the correlation between the abundance of target taxa and a phytopathogen but also the stability and fitness of taxa within plant-associated communities and the reproducibility of the predicted effect of taxa under different conditions. This conveyor can be widely used to search for biological agents against various plant infectious diseases.
The top indicator microbial taxa for winter wheat and rye following the winter period were Ph. sclerotioides and Microdochium, respectively, both of which are causal agents of snow mold disease. Bacteria from the Cellulomonas, Lechevalieria, and Pseudoxanthomonas genera and fungi from the Cladosporium, Entimomentora, Pseudogymnoascus, and Cistella genera are prime candidates for testing their plant-protective properties against Microdochium-induced snow mold disease and for further use in agricultural practice.
由不同嗜冷植物病原真菌引起的雪腐病是冬季谷物的一种毁灭性病害。雪腐病病原复合体(雪腐病真菌的定量组成)在不同作物或不同农业生态系统中的变异性尚未得到评估,并且在全微生物组水平上尚未预测出作为潜在有效雪腐病防治剂的微生物类群。我们的研究旨在评估在病害进展高峰期后,不同农业生态系统中不同冬季谷物作物(黑麦、小麦和小黑麦)的雪腐病病原复合体的变异性,并整理出一份微生物类群的层级列表,这些微生物类群被预测为预防或相反刺激雪腐病病原体发展的主要候选者。
在特定农业生态系统中,不同作物之间微生物群落的变异性很大程度上由真菌群落决定,而特定作物在不同农业生态系统中的微生物群落变异性很大程度上由细菌群落决定。雪腐病病原复合体在黑麦中最为“稳定”,其重复间变异性和农业生态系统间变异性水平最低,并且(与小黑麦雪腐病病原复合体类似)微dochium对其他雪腐病真菌具有很强的优势。小麦雪腐病病原复合体由不同的雪腐病真菌代表,包括研究较少的核盘菌状茎点霉。为了预测雪腐病防治微生物,构建并应用了一套统计方法流程;该流程不仅能够考虑目标类群丰度与植物病原体之间的相关性,还能考虑植物相关群落中类群的稳定性和适应性以及不同条件下类群预测效果的可重复性。该流程可广泛用于寻找针对各种植物传染病的生物制剂。
冬季过后,冬小麦和黑麦的顶级指示微生物类群分别是核盘菌状茎点霉和微dochium,它们都是雪腐病的致病因子。来自纤维单胞菌属、勒氏菌属和假黄单胞菌属的细菌以及来自枝孢属、Entimomentora属、假裸囊菌属和Cistella属的真菌是测试其对微dochium引起的雪腐病的植物保护特性并进一步用于农业实践的主要候选者。