Suppr超能文献

利用监督式机器学习和国际疾病分类第十版(ICD10),在马里兰州医疗服务成本审查委员会的数据集中识别儿科创伤患者的非意外创伤。

Using supervised machine learning and ICD10 to identify non-accidental trauma in pediatric trauma patients in the Maryland Health Services Cost Review Commission dataset.

作者信息

Hou Titus, An Daniel, Hicks Caitlin W, Haut Elliott, Nasr Isam W

机构信息

University of Illinois College of Medicine - Peoria Campus, Bloomberg School of Public Health, United States of America.

Johns Hopkins School of Medicine, United States of America.

出版信息

Child Abuse Negl. 2025 Feb;160:107228. doi: 10.1016/j.chiabu.2024.107228. Epub 2025 Jan 11.

Abstract

BACKGROUND

Identifying non-accidental trauma (NAT) in pediatric trauma patients is challenging. We developed a machine learning model that uses demographic characteristics and ICD10 codes to detect the first diagnosis of NAT.

METHODS

We analyzed data from the Maryland Health Services Cost Review Commission (2015-2020) for patients aged 0-19 years. Relevant ICD10 codes associated with NAT and trauma were identified. Health records preceding the patients' first trauma diagnosis were analyzed. Random forest models were built using covariates selected through penalized regularization. Models were developed for confirmed and suspected NAT. Data was divided into 80/20 split for model training and testing. We conducted analysis in R.

RESULTS

We analyzed 128,351 non-NAT trauma patients, 522 confirmed NAT patients, and 2128 suspected NAT patients totaling 364,217 encounters. Variable selection identified 55 covariates for confirmed NAT and 65 for suspected NAT for model development. These covariates were primarily musculoskeletal injuries of the head and extremities. Model testing results are summarized in Table 1.

CONCLUSION

Our study uses machine learning to identify NAT within the pediatric trauma cohort. Analyzing ICD10 categories before the first traumatic diagnosis may allow for earlier detection of NAT. Additional research in building learning models with ICD10 codes is needed to better understand how clinician and billing biases may impact predictive models. Supervised machine learning can potentially augment clinical decision-making and enhance pediatric trauma care.

摘要

背景

识别儿科创伤患者的非意外创伤(NAT)具有挑战性。我们开发了一种机器学习模型,该模型使用人口统计学特征和ICD10编码来检测NAT的首次诊断。

方法

我们分析了马里兰州医疗服务成本审查委员会(2015 - 2020年)中0至19岁患者的数据。确定了与NAT和创伤相关的相关ICD10编码。分析了患者首次创伤诊断之前的健康记录。使用通过惩罚正则化选择的协变量构建随机森林模型。为确诊和疑似NAT开发模型。数据按80/20比例划分用于模型训练和测试。我们在R中进行了分析。

结果

我们分析了128,351例非NAT创伤患者、522例确诊NAT患者和2128例疑似NAT患者,共计364,217次就诊。变量选择确定了55个确诊NAT的协变量和65个疑似NAT的协变量用于模型开发。这些协变量主要是头部和四肢的肌肉骨骼损伤。模型测试结果总结在表1中。

结论

我们的研究使用机器学习在儿科创伤队列中识别NAT。在首次创伤诊断之前分析ICD10类别可能有助于更早地检测NAT。需要进行更多关于使用ICD10编码构建学习模型的研究,以更好地理解临床医生和计费偏差可能如何影响预测模型。监督式机器学习可能会增强临床决策并改善儿科创伤护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验