Suppr超能文献

基于高光谱数据利用深度神经网络对猪臀半棘肌烹饪损失进行估计

Cooking loss estimation of semispinalis capitis muscle of pork butt using a deep neural network on hyperspectral data.

作者信息

Jo Kyung, Lee Seonmin, Jeong Seul-Ki-Chan, Kim Hyeun Bum, Seong Pil Nam, Jung Samooel, Lee Dae-Hyun

机构信息

Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea.

Department of Animal Resources Science, Dankook University, Cheonan 16890, Republic of Korea.

出版信息

Meat Sci. 2025 Apr;222:109754. doi: 10.1016/j.meatsci.2025.109754. Epub 2025 Jan 10.

Abstract

This study evaluated the performance of a deep-learning-based model that predicted cooking loss in the semispinalis capitis (SC) muscle of pork butts using hyperspectral images captured 24 h postmortem. To overcome low-scale samples, 70 pork butts were used with pixel-based data augmentation. Principal component regression (PCR) and partial least squares regression (PLSR) models for predicting cooking loss in SC muscle showed higher R values with multiplicative signal correction, while the first derivative resulted in a lower root mean square error (RMSE). The deep learning-based model outperformed the PCR and PLSR models. The classification accuracy of the models for cooking loss grade classification decreased as the number of grades increased, with the models with three grades achieving the highest classification accuracy. The deep learning model exhibited the highest classification accuracy (0.82). Cooking loss in the SC muscle was visualized using a deep learning model. The pH and cooking loss of the SC muscle were significantly correlated with the cooking loss of pork butt slices (-0.54 and 0.69, respectively). Therefore, a deep learning model using hyperspectral images can predict the cooking loss grade of SC muscle. This suggests that nondestructive prediction of the quality properties of pork butts can be achieved using hyperspectral images obtained from the SC muscle.

摘要

本研究评估了一种基于深度学习的模型的性能,该模型使用宰后24小时采集的高光谱图像预测猪臀半棘肌(SC)的烹饪损失。为克服样本量少的问题,使用了70个猪臀并进行基于像素的数据增强。预测SC肌肉烹饪损失的主成分回归(PCR)模型和偏最小二乘回归(PLSR)模型在采用乘法信号校正时显示出更高的R值,而一阶导数导致更低的均方根误差(RMSE)。基于深度学习的模型优于PCR和PLSR模型。随着等级数量的增加,烹饪损失等级分类模型的分类准确率降低,三个等级的模型分类准确率最高。深度学习模型表现出最高的分类准确率(0.82)。使用深度学习模型对SC肌肉的烹饪损失进行了可视化。SC肌肉的pH值和烹饪损失与猪臀切片的烹饪损失显著相关(分别为-0.54和0.69)。因此,使用高光谱图像的深度学习模型可以预测SC肌肉的烹饪损失等级。这表明利用从SC肌肉获得的高光谱图像可以实现对猪臀质量特性的无损预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验