Hsieh Ya-Ju, Hung Cheng-Yu, Chen Yi-Ting, Lin Yu-Tsun, Chang Kai-Ping, Chiang Wei-Fan, Chien Chih-Yen, Wu Chih-Ching, Li Liang, Yu Jau-Song, Chien Kun-Yi
Molecular and Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan.
Molecular and Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan.
Anal Chim Acta. 2025 Feb 1;1337:343514. doi: 10.1016/j.aca.2024.343514. Epub 2024 Dec 11.
Tissue metabolomics analysis, alongside genomics and proteomics, offers crucial insights into the regulatory mechanisms of tumorigenesis. To enhance metabolite detection sensitivity, chemical isotope labeling (CIL) techniques, such as dansylation, have been developed to improve metabolite separation and ionization in mass spectrometry (MS). However, the dissolution of hydrophobic derivatized metabolites in solvents with high acetonitrile content limits the use of liquid chromatography (LC) systems with small-volume reversed-phase (RP) columns. In this study, we established a nano-LC-MS system with an online dilution design to address this issue, enabling sensitive analysis of oral cancer tissue metabolomes.
Our nano-LC system features a flow path design with online sample dilution before an RP trap column and backflushing of the trap column before entering the analytical column. Compared to other nano-LC systems, both with and without online dilution designs, our system demonstrates the superiority of the T-connector-based dilution method. Using only 1/20th of the sample required for popular micro-LC systems, our nano-LC detects a larger number of peak pairs with similar recovery rates for both hydrophilic and hydrophobic metabolites, ensuring unbiased results. Thirty-two matched pairs of oral squamous cell carcinoma (OSCC) tissue samples and adjacent noncancerous tissues (ANTs) underwent high-throughput CIL-metabolome analysis using our nano-LC system. Compared to our previous micro-LC methods, the nano-LC-MS system exhibits enhanced detection sensitivity, significantly reducing sample requirements.
Our findings highlight the efficacy of our platform for metabolomic analysis with limited sample amounts. The nano-LC system's ability to analyze samples dissolved in strong eluents suggests potential applications for handling other hydrophobic compounds using RPLC or other separation methods facing similar solvent incompatibility issues. This approach holds promise for identifying novel metabolite biomarkers for oral cancers, advancing our understanding of tumorigenesis, and enhancing clinical applications.
组织代谢组学分析与基因组学和蛋白质组学一起,为肿瘤发生的调控机制提供了关键见解。为了提高代谢物检测灵敏度,已开发出化学同位素标记(CIL)技术,如丹磺酰化,以改善质谱(MS)中的代谢物分离和电离。然而,疏水性衍生代谢物在高乙腈含量溶剂中的溶解性限制了使用小体积反相(RP)柱的液相色谱(LC)系统。在本研究中,我们建立了一种具有在线稀释设计的纳升液相色谱-质谱系统来解决这个问题,从而能够对口腔癌组织代谢组进行灵敏分析。
我们的纳升液相色谱系统具有在RP捕集柱之前进行在线样品稀释以及在进入分析柱之前对捕集柱进行反冲的流路设计。与其他纳升液相色谱系统相比,无论有无在线稀释设计,我们的系统都展示了基于T型接头的稀释方法的优越性。我们的纳升液相色谱仅使用流行的微升液相色谱系统所需样品量的1/20,就能检测到更多的峰对,亲水性和疏水性代谢物的回收率相似,确保了结果的无偏性。使用我们的纳升液相色谱系统对32对匹配的口腔鳞状细胞癌(OSCC)组织样本和相邻非癌组织(ANT)进行了高通量CIL代谢组分析。与我们之前的微升液相色谱方法相比,纳升液相色谱-质谱系统具有更高的检测灵敏度,显著降低了样品需求。
我们的研究结果突出了我们的平台在有限样品量代谢组分析中的有效性。纳升液相色谱系统分析溶解在强洗脱剂中的样品的能力表明,对于使用反相液相色谱(RPLC)或面临类似溶剂不相容问题的其他分离方法处理其他疏水性化合物具有潜在应用。这种方法有望识别口腔癌的新型代谢物生物标志物,推进我们对肿瘤发生的理解,并加强临床应用。