Suppr超能文献

一种用于微图案化基底上牵引力显微镜检查的开源Python工具。

An Open-source Python Tool for Traction Force Microscopy on Micropatterned Substrates.

作者信息

Ruppel Artur, Misiak Vladimir, Balland Martial

机构信息

Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France.

Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, CNRS, Grenoble, France.

出版信息

Bio Protoc. 2025 Jan 5;15(1):e5156. doi: 10.21769/BioProtoc.5156.

Abstract

Cell-generated forces play a critical role in driving and regulating complex biological processes, such as cell migration and division and cell and tissue morphogenesis in development and disease. Traction force microscopy (TFM) is an established technique developed in the field of mechanobiology used to quantify cellular forces exerted on soft substrates and internal mechanical tissue stresses. TFM measures cell-generated traction forces in 2D or 3D environments with varying mechanical and biochemical properties. This technique involves embedding fiducial markers in the substrate, imaging substrate deformations caused by the cells, and using mathematical models to infer forces. This protocol compiles procedures from various previously published studies and software packages and describes how to perform TFM on 2D micropatterned substrates. Although not the focus of this protocol, the methods and software packages shown here also allow to perform monolayer stress microscopy (MSM), a method to calculate internal mechanical stress within the cells by modeling them as a thin plate with linear and homogeneous material properties. TFM and MSM are non-invasive methods capable of yielding spatially and temporally resolved force and stress maps with high throughput. As such, they enable the generation of rich datasets, which can provide valuable insights into the roles of cell-generated forces in various physiological and pathological processes. Key features • TFM and MSM protocol for 2D micropatterned polyacrylamide substrates, from sample preparation over imaging to data analysis with provided code. • Sample preparation method is based on Tseng et al. [1]. • TFM analysis is done with Python custom code and is optimized for batch analysis of movies. • MSM analysis is done with pyTFM from Bauer et al. [2].

摘要

细胞产生的力在驱动和调节复杂的生物过程中起着关键作用,如细胞迁移、分裂以及发育和疾病过程中的细胞与组织形态发生。牵引力显微镜(TFM)是力学生物学领域开发的一种成熟技术,用于量化细胞施加在柔软基质上的力以及内部机械组织应力。TFM可在具有不同机械和生化特性的二维或三维环境中测量细胞产生的牵引力。该技术包括在基质中嵌入基准标记,对细胞引起的基质变形进行成像,并使用数学模型推断力。本方案汇编了之前各种已发表研究和软件包中的程序,并描述了如何在二维微图案化基质上进行TFM。尽管本方案的重点不是此内容,但此处展示的方法和软件包也可用于进行单层应力显微镜(MSM),这是一种通过将细胞建模为具有线性和均匀材料特性的薄板来计算细胞内内部机械应力的方法。TFM和MSM是非侵入性方法,能够以高通量生成空间和时间分辨的力和应力图。因此,它们能够生成丰富的数据集,从而为细胞产生的力在各种生理和病理过程中的作用提供有价值的见解。关键特性•针对二维微图案化聚丙烯酰胺基质的TFM和MSM方案,从样品制备到成像,再到使用提供的代码进行数据分析。•样品制备方法基于曾等人[1]的研究。•TFM分析使用Python自定义代码完成,并针对批量分析电影进行了优化。•MSM分析使用鲍尔等人[2]的pyTFM完成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fb7/11717713/42a1dbb7dfa7/BioProtoc-15-1-5156-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验